会员
虚拟现实与增强现实技术
赵罡等编著更新时间:2023-09-15 18:17:37
最新章节:参考文献开会员,本书免费读 >
虚拟现实和增强现实技术目前在智能制造中得到了越来越多的应用。本书重点介绍在应用此类技术涉及的关键技术,包括绘制技术、人机交互技术、开发平台特别是几何引擎和动力学引擎等,对于其在智能制造中的典型应用给予了专门介绍。书中大部分案例都取自作者所在课题组实际开发的工程实例,是一本理论与实用兼顾的参考工具书。
品牌:清华大学
上架时间:2022-04-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
赵罡等编著
主页
同类热门书
最新上架
- 会员
PyTorch深度学习与企业级项目实战
《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字 - 会员
人工智能新时代:核心技术与行业赋能
本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字 - 会员
智能计算系统:从深度学习到大模型
本书由中科院计算所、软件所的专家学者倾心写就,以“图像风格迁移”应用为例,全面介绍智能计算系统的软硬件技术栈。第2版以大模型为牵引进行更新,第1章回顾人工智能、智能计算系统的发展历程,第2、3章在介绍深度学习算法知识的基础上增加了大模型算法的相关知识,第4章介绍深度学习编程框架PyTorch的发展历程、基本概念、编程模型和使用方法,第5章介绍编程框架的工作原理,第6章回顾深度学习所用的处理器结构从计算机34.9万字 - 会员
当我点击时,算法在想什么?
我们生活在一个由算法构筑的世界:这些基于数据的算法不仅掌控着社会的运转、筛选着我们的网络见闻,还构成了自动驾驶、智能家居、前沿医疗、智慧城市乃至元宇宙发展的根本。它们是人类步入智能化新纪元的关键驱动力。随着我们对数字技术的依赖日益加深,数学家和数据研究者得以透过它们窥探我们的日常生活。他们通过收集我们的购物记录、消费倾向、兴趣爱好和旅行路径等数据,试图解码我们的日常行为模式。但是,这些数据驱动的分计算机15.2万字 - 会员
量子人工智能
量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第计算机7.6万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字
同类书籍最近更新
- 会员
空间智能原理与应用
本书从空间信息处理角度出发,将人工智能领域的理论研究与专业实践相结合,完整介绍人工智能方法及其在空间信息处理中的应用,不仅涵盖人工智能领域的基础概念与基本方法,而且探讨知识图谱、计算智能、新兴机器学习、深度学习等前沿技术,同时介绍人工智能在地理文本大数据、遥感影像、激光点云等空间信息处理中的应用实例,具有较强的代表性和启发性。本书可以作为高等院校空间信息与数字技术、遥感科学与技术等专业高年级本科生人工智能23.8万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容人工智能30.2万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI人工智能15.8万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用人工智能8.1万字