
会员
人工智能治理研究
更新时间:2025-03-28 18:26:55
最新章节:注释开会员,本书免费读 >
本书从技术和规制两个角度入手,以人工智能治理的法律、公共政策以及伦理规范等相关社会行为和社会关系的规则建立和运行为主要思考方向和研究进路,在梳理人工智能发展情况、欧盟及其他国家人工智能立法与政策发布现状的基础上,对人工智能治理的基础、基本路径及我国人工智能产业、政策与规制思路进行了全面和有益的探索。
品牌:北大出版社
上架时间:2022-10-01 00:00:00
出版社:北京大学出版社
本书数字版权由北大出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
最新上架
- 会员
人工智能编程实践:C++编程5级
青少年人工智能编程水平测试涵盖从数学逻辑到计算思维、从拖曳程序模块到程序编写、从数学建模到算法设计等多学科知识,能够对学生的多学科知识综合运用能力做出评价;能够通过设计的具体解决方案,对学生的计算思维、创造性思维等能力做出评价;在具体的解决方案中,能够通过设计算法模型和实现算法,对学生掌握和运用编程的能力做出评价。本书结合生活中的实例,系统地介绍了不同进制之间的转换、函数参数的作用域、枚举算法、二计算机2万字 - 会员
人工智能编程实践:Python编程5级
青少年人工智能编程水平测试涵盖从数学逻辑到计算思维、从拖曳程序模块到程序编写、从数学建模到算法设计等多学科知识,能够对学生的多学科知识综合运用能力做出评价;能够通过设计的具体解决方案,对学生的计算思维、创造性思维等能力做出评价;在具体的解决方案中,能够通过设计算法模型和实现算法,对学生掌握和运用编程的能力做出评价。本书将生活中的一些案例和程序算法相结合,深入浅出地为学生讲解不同进制之间的转换、函数计算机3.9万字 - 会员
科学仪器设备配置学:人工智能时代的界面管理
本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。计算机17.5万字 - 会员
AI帮你赢:人人都能用的AI方法论
本书强调“把AI作为方法”(AI即ArtifcialIntelligence,人工智能)这一核心理念,旨在引导读者掌握与AI对话的关键技巧,并将AI融入工作和生活真正体验AI带给人类的高效与便捷。本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了AI的强大魅力,通过一系列“召唤术”帮助读者运用AI创造性地计算机9.7万字 - 会员
智能控制与强化学习:先进值迭代评判设计
在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次计算机8.7万字 - 会员
AI自媒体写作超简单
本书结合作者10多年写作经验,基于AI应用ChatGPT、文心一言、智谱清言、讯飞星火、通义千问、Kimi等,详细介绍了使用AI写作的流程、方法和技巧,旨在帮助想要通过内容输出加速个人发展的读者,快速掌握AI自媒体写作的方法和技巧。本书分为11章,涵盖AI自媒体写作概述、AI提示词、AI起标题、AI做选题、AI角色化写作、AI套路化写作、AI仿写、AI模块化写作、AI改写、AI润色、AI智能体写作计算机9.2万字 - 会员
人工智能基础与应用
本书主要介绍了人工智能的基础知识和实用技术。本书共8章,包括“人工智能:开启智慧新时代”“Python:人工智能开发语言”“线性回归:预测未来趋势”“分门别类:帮你‘分而治之’”“物以类聚:发现新簇群”“个性化推荐:主动满足你的需求”“语音识别:让机器对你言听计从”“人脸识别:机器也认识你”。本书以培养学生人工智能素养、人工智能思维和人工智能基本应用能力为设计理念,在内容的选取和安排上符合学生的学计算机12.9万字 - 会员
如何教人工智能说人话?
AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字