强化学习:原理与Python实现
上QQ阅读APP看书,第一时间看更新

1.4 强化学习的分类

强化学习的任务和算法多种多样,本节介绍一些常见的分类(见图1-6)。

图1-6 强化学习的分类

1.4.1 按任务分类

根据强化学习的任务和环境,可以将强化学习任务作以下分类。

·单智能体任务(single agent task)和多智能体任务(multi-agent task):顾名思义,根据系统中的智能体数量,可以将任务划分为单智能体任务和多智能体任务。单智能体任务中只有一个决策者,它能得到所有可以观察到的观测,并能感知全局的奖励值;多智能体任务中有多个决策者,它们只能知道自己的观测,感受到环境给它的奖励。当然,在有需要的情况下,多个智能体间可以交换信息。在多智能体任务中,不同智能体奖励函数的不同会导致它们有不同的学习目标(甚至是互相对抗的)。在本书没有特别说明的情况下,一般都是指单智能体任务。

·回合制任务(episodic task)和连续性任务(sequential task):对于回合制任务,可以有明确的开始状态和结束状态。例如在下围棋的时候,刚开始棋盘空空如也,最后棋盘都摆满了,一局棋就可以看作是一个回合。下一个回合开始时,一切重新开始。也有一些问题没有明确的开始和结束,比如机房的资源调度。机房从启用起就要不间断地处理各种信息,没有明确的结束又重新开始的时间点。

·离散时间环境(discrete time environment)和连续时间环境(continuous time environment):如果智能体和环境的交互是分步进行的,那么就是离散时间环境。如果智能体和环境的交互是在连续的时间中进行的,那么就是连续时间环境。

·离散动作空间(discrete action space)和连续动作空间(continuous action space):这是根据决策者可以做出的动作数量来划分的。如果决策得到的动作数量是有限的,则为离散动作空间,否则为连续动作空间。例如,走迷宫机器人如果只有东南西北这4种移动方式,则其为离散动作空间;如果机器人向360°中的任意角度都可以移动,则为连续动作空间。

·确定性环境任务(deterministic environment)和非确定性环境(stochastic environment):按照环境是否具有随机性,可以将强化学习的环境分为确定性环境和非确定性环境。例如,对于机器人走固定的某个迷宫的问题,只要机器人确定了移动方案,那么结果就总是一成不变的。这样的环境就是确定性的。但是,如果迷宫会时刻随机变化,那么机器人面对的环境就是非确定性的。

·完全可观测环境(fully observable environment)和非完全可观测环境(partially observable environment):如果智能体可以观测到环境的全部知识,则环境是完全可观测的;如果智能体只能观测到环境的部分知识,则环境是非完全可观测的。例如,围棋问题就可以看作是一个完全可观测的环境,因为我们可以看到棋盘的所有内容,并且假设对手总是用最优方法执行;扑克则不是完全可观测的,因为我们不知道对手手里有哪些牌。

1.4.2 按算法分类

从算法角度,可以对强化学习算法作以下分类。

·同策学习(on policy)和异策学习(off policy):同策学习是边决策边学习,学习者同时也是决策者。异策学习则是通过之前的历史(可以是自己的历史也可以是别人的历史)进行学习,学习者和决策者不需要相同。在异策学习的过程中,学习者并不一定要知道当时的决策。例如,围棋AI可以边对弈边学习,这就算同策学习;围棋AI也可以通过阅读人类的对弈历史来学习,这就算异策学习。

·有模型学习(model-based)和无模型学习(model free):在学习的过程中,如果用到了环境的数学模型,则是有模型学习;如果没有用到环境的数学模型,则是无模型学习。对于有模型学习,可能在学习前环境的模型就已经明确,也可能环境的模型也是通过学习来获得。例如,对于某个围棋AI,它在下棋的时候可以在完全了解游戏规则的基础上虚拟出另外一个棋盘并在虚拟棋盘上试下,通过试下来学习。这就是有模型学习。与之相对,无模型学习不需要关于环境的信息,不需要搭建假的环境模型,所有经验都是通过与真实环境交互得到。

·回合更新(Monte Carlo update)和时序差分更新(temporal difference update):回合制更新是在回合结束后利用整个回合的信息进行更新学习;而时序差分更新不需要等回合结束,可以综合利用现有的信息和现有的估计进行更新学习。

·基于价值(value based)和基于策略(policy based):基于价值的强化学习定义了状态或动作的价值函数,来表示到达某种状态或执行某种动作后可以得到的回报。基于价值的强化学习倾向于选择价值最大的状态或动作;基于策略的强化学习算法不需要定义价值函数,它可以为动作分配概率分布,按照概率分布来执行动作。

·深度强化学习(Deep Reinforcement Learning,DRL)算法和非深度强化学习算法。如果强化学习算法用到了深度学习,则这种强化学习可以称为深度强化学习算法。

值得一提的是,强化学习和深度学习是两个独立的概念。一个学习算法是不是强化学习和它是不是深度学习算法是相互独立的(见图1-7)。如果一个算法解决了强化学习的问题,这个算法就是强化学习的算法;如果一个算法用到了深度神经网络,这个算法就是深度学习算法。一个强化学习算法可以是深度学习算法,也可以不是深度学习算法;一个深度学习算法可以是强化学习算法,也可以不是强化学习算法。对于强化学习算法而言,在问题规模比较小时,能够获得精确解;当问题规模比较大时,常常使用近似的方法。深度学习则利用神经网络来近似复杂的输入/输出关系。对于规模比较大的强化学习问题,可以考虑利用深度学习来实现近似。如果一个算法既是强化学习算法,又是深度学习算法,则可以称它是深度强化学习算法。例如,很多电动游戏AI需要读取屏幕显示并据此做出决策。对屏幕数据的解读可以采用卷积神经网络这一深度学习算法。这时,这个AI就用到了深度强化学习算法。

图1-7 强化学习与深度学习之间的关系