![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739595055-mPkEGSpN8yEbfT9qGOe7lx7uZ5HqorkX-0-a3959e527759f3ff1dfafd4630ce7af6)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739595055-zjzILqlKQkUZIhFrFWWq9gORdzGUwxym-0-6622fbbb2ddd6a9e9986c7c0d4c6ae40)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739595055-XQXa4Wd3mzU774sqVHB9z74J01nbxIa3-0-b4a4d2b78402b72b4f0bde6813afb3cc)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739595055-izKNoz82fWrsohVHi5XOM8VrLFTzcscl-0-e239febaedc47911d3cae48bacc5973f)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739595055-1kQVkYzWZ5av0dMMQQGqkbX8aFc4rez7-0-34e2ba669ede94238dfb223f965eb71b)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739595055-93LLaS9olxVNT88ZdJpZkFUTGh9VraGx-0-25a3d1a48258e441b2c938bfa4d26c17)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739595055-D0CJEzQcw2uzp5zxdcdhlli1aVm0fe8G-0-da3ce982db372f929eade0870c1d21e7)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739595055-5SWmQrQVBs1fMuOlC7siYwf8XUq6VZjH-0-e5d98c738f31c5c6155c83afc349e2cd)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739595055-VCCxTHiy9OvzhyBpWwGGnGNijXtOCfqz-0-150ef69e6233daf5a2716fca65ff43db)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739595055-dQX5JzMx7shMlQQPYg77pEfeeqCM3aLC-0-82c5b8fa2a2f32cf4d0ee211cdc9b9d2)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739595055-5leSmlLpJmvCOkuBv8FGUKQMvmc1HlLi-0-432b086086b76cd54f44e2bb62280fa6)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739595055-XDEY9Sir3WBmhWtLOSWI8Ra58LlCLMn9-0-d361e8a436d0ee9e5b0d47771793ac4e)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739595055-nWTmXEVqa92GrNNOMhf0XU6y0vpHum5b-0-93e86407682bb65dd854d4e3366ad469)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739595055-4BZ9ShorSVY1ZL282jmsDdBdIv4b5A5q-0-4534e8b66200e7bbe0abf2bb0901222b)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739595055-2xndUqIQb30zDfw6filXn4oq4NdrnBlN-0-9415dd6857e1372ee6d43a849f28451d)