![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§7 恰当微分方程与积分因子
微分方程式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0193.jpg?sign=1738891090-el5PtYUYjWmqYcRBpRWhpC4OCphr37NI-0-2a8e29a234b058e94fee4d67bedfff1f)
可以改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0194.jpg?sign=1738891090-70gmTj7MidCpEABkzAiZ4dRgubwrcqRn-0-9692aef89a08b64595363aa513413880)
这种写法的更一般形式是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0195.jpg?sign=1738891090-iIs27KKWW0nXYZsrmGZhi8Uc1t2Df7Lr-0-12d34d36b04cace801cd35286f59949d)
将一阶微分方程写成这样的形式,对于探寻初等积分方法,有时比较方便.
7.a恰当微分方程
首先考查这样的情形:方程(7.2)的左端是一个恰当的微分式.我们把这样的方程叫做恰当微分方程或者全微分方程.对这种情形,存在连续可微函数使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0196.jpg?sign=1738891090-tf7XhloF2y5twc1QL2r7MOZSzo1uPMYo-0-43bebaf355606a676b739a4f966f70db)
于是,方程(7.2)的任何一个解y=(x)必定使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0197.jpg?sign=1738891090-LgUcuO94uxQHWsUZQbgAvsfa1iP4fzSC-0-7741f75a761500ec2e1cddcbae36debc)
因而满足
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0198.jpg?sign=1738891090-syPAYVromDnY49b2ZgKz3MPDbkFHSFf8-0-fdf5805c7817ed4819846e3774bfee3f)
——这里C是常数.反过来,由于(7.3)式,任何满足(7.4)的连续可微函数也必定满足方程(7.2).我们求得了用隐函数形式表示的方程(7.2)的一般解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0199.jpg?sign=1738891090-ILrN0dwYVEnAxswMM5hC4mmcapd0WeyJ-0-93cb3962a6abe2415318ed174c4e642c)
这里C是一个任意常数.像这样的用隐函数形式表示的解,通常叫做“积分我们得到以下结论:
定理1 恰当微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0200.jpg?sign=1738891090-vEeLBe85OChzGalZV2No1YF4hD9ZtPmq-0-19d257fe6218fade843b9fdbc0ccfc90)
的通积分为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0201.jpg?sign=1738891090-LBAenjp5cVNMn6yHTeA7xoIlK6emnHuX-0-aa367e64d7a709e3c2d9e79c6fe5c0ee)
这里U(x, y)是方程左端微分式的一个原函数,C是任意常数.
上节中的讨论,实际上已经解决了以下两个基本问题(特别是对单连通区域的情形):
一、怎样判断像(7.2)那样的方程是否恰当微分方程?
二、如果(7.2)是一个恰当的微分方程,那么我们怎样具体求出方程左端微分式的原函数?
因此,恰当微分方程的求解问题,可以认为是已经解决了.
具体求解的时候,常常可以通过观察直接写出原函数来.要做到这一点,需要十分熟悉微分的运算法则,并善于将微分式分组.请看下面的例子.
例1 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0202.jpg?sign=1738891090-jHQwVbHjhSdxayCcgDzNGaE4NPuuwTrd-0-3ab9503b6c00c8e3d6a27c64792f402a)
解 将方程左端的微分式分成两组:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0203.jpg?sign=1738891090-eLmblj5apBzZZaqd6XArsUBKsA5r5QZf-0-0ceb544b5a322bd986fa935dbed38ef3)
很容易看出:第一组微分式的一个原函数是x ey第二组微分式的一个原函数是y2.因而原方程左端微分式的一个原函数是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0204.jpg?sign=1738891090-nF2xxmBNvuNB4QxAn7nXvnDfi4tS2DtF-0-dfdc27c72244ef470e59249da02b3a06)
原方程的通解(通积分)为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0205.jpg?sign=1738891090-16imrRKsiSZtAHNPGpBnr6wDFAdp6QpI-0-e653d6eb14087ab21c00b809c78eddd2)
例2 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0206.jpg?sign=1738891090-xgoi6eXfodwp4NEGVj221IUcD5Fmub2L-0-4f83cea2b8b8e55a79c83cc8996bda99)
解 原方程左端可按以下办法分组
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0207.jpg?sign=1738891090-6JsULtAJIG2VXQbJWKAr2H9p4V0pyBdr-0-a9564838051815032ea76358e979c708)
容易求出上式的原函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0208.jpg?sign=1738891090-zIYlua8j5cCrrxk9tAviFMS1geDGTzBp-0-d20f2d41aaa3e2b7e55a596fbb221289)
原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0209.jpg?sign=1738891090-lElqlX5dFh52Uams2Drmw1Y0yJnAaUf6-0-8d63f60ec86f2e23920a34e48033f850)
以下一些公式当然是需要熟记的:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0210.jpg?sign=1738891090-Q6VApWQZPt9qYNfG7dcHuupsJR4DEFJq-0-f22659b4aedabfb2550a6e9ef9c59e7b)
应该指出,观察法求原函数虽然很省事,但这方法依赖于技巧和熟练,并不是每次都能成功的.另外,除了简单的情形而外,不容易一眼就看出方程是否恰当的.如果盲目去做,可能会误入歧途.因此,上节所介绍的恰当微分式的判别法和原函数的求法.是必须牢固掌握的.
7.b积分因子
恰当微分方程要求左端的微分式凑巧是一个全微分.这种情形并不多见.对一般的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0211.jpg?sign=1738891090-eAD4ue5Ua7A9CTFwzKeWCUZ53foZNNw8-0-9bc8ad043eaa45e4cb0600eee6891115)
我们可以用适当的非零因子去乘等号两边,把它化成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0212.jpg?sign=1738891090-gaHpldgKpEwwHRqkJ8KbUtxt5W3Z4916-0-a8e60e921b006301e5aff3c2221645a3)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0213.jpg?sign=1738891090-mL2UWLFuRd5kLWy2JF95BekqBp2ccuEZ-0-ded008b6196978511d44095dd3ecf086)
如果这样得到的方程(7.7)是一个恰当微分方程,那么我们就说μ(x, y)是方程(7.6)的一个积分因子.
我们指出一个重要的事实:任何形如(7.6)的方程,都必定具有积分因子.但这一事实的证明,涉及到一阶偏微分方程理论,我们这里不能讲述.而且理论上的证明,只是肯定了积分因子的存在性,并没有告诉具体求出这因子的办法,对实际解题未必有很多帮助.下面将要介绍的,是求积分因子的某些具体办法.对于一阶微分方程来说,积分因子法概括总结了主要的初等积分法,因而给我们提供了一个很好的复习机会.
例3 可分离变元的一阶微分方程.
这种方程的一般形式为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0214.jpg?sign=1738891090-TNGf6qdOclhaoshTPvGZOP7JZbIaJZo8-0-d924736486a8abcaae3ffc23400b642c)
如果M2(y)N1≠0,那么这方程就有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0215.jpg?sign=1738891090-JeUCcvUIL6NWdS8oL1K6AFIenpwQcLwp-0-93a7041bcb4c7eb80cc84a0c13874b86)
用这因子乘方程两边就可将变元分离:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0216.jpg?sign=1738891090-Q3bmu0iXJz4YFNuOc3gdaWbNqz7sgemM-0-4c45f814d381ee1e8cdfb07145c4f389)
上式左端是一个恰当形式,它的一个原函数为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0217.jpg?sign=1738891090-BV2twcclhbl4U5WOTgky15japcQUp2uh-0-3fad8b3433baff7cb261edd4faba228f)
因而原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0218.jpg?sign=1738891090-VSGnkLl8gy96v6WcjbndDmbCr9igC2qL-0-35c722b1e1ebf95ad5d27d1110814172)
例4 考查一阶线性方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0219.jpg?sign=1738891090-sTH2okpdt5vNkf7Qa5m0Lid1wtrt4k3t-0-b101f041d90feb614c582be0dab175d9)
这方程具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0220.jpg?sign=1738891090-ymw5redaXYLiWCBvN98HAwixrpdDwwh3-0-80f96ee2729cfac8770965203685fb95)
以这因子乘原方程,就把它化成了可积分的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0221.jpg?sign=1738891090-v9TU8ktmYTbDUse04eEU5TTzHohP86xs-0-05eeeb29e2566d76ea73e531a6fe4a42)
一个函数M(x,y)被称为k次齐次函数,如果它满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0222.jpg?sign=1738891090-GJ2fepfbTZUSMPQE4O0uW2GXGORDid7n-0-3d37f3855efddc3d6a2ad2ad70be7e6f)
连续可微的k次齐次函数M(x,y)满足以下的欧拉恒等式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0223.jpg?sign=1738891090-juCMqnxdKsWAf5gwwd6Xn5gp86TtZZYI-0-37ed91b2368294025e131935828a0b0f)
事实上,只要将(7.8)的两边对t求导,然后代进t=1,就可得到(7.9)式.
在下面的例子中,我们考查系数为齐次函数的微分方程.
例5 设M(x,y)和N(x,y)都是k次齐次函数,则微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0224.jpg?sign=1738891090-4NOgak5FhfN3FmTQdZAkyvZZU7GJcrWX-0-7762e881d12c6a4afd3fec3e06ccadf4)
具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0225.jpg?sign=1738891090-VOlxWwuHKKELjxg1H4SBgOkvU8uAMBcp-0-0cf852feb9882ca82a5dca52078e0c05)
这里设xM+yN≠0
证明 首先,引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0226.jpg?sign=1738891090-O47PQaH162KEScN947QEk1T7jIvNN79u-0-b36f6483b7159addb38ce92c1bcc727d)
我们来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0227.jpg?sign=1738891090-arEa9K8ct0epbFUnIDPuX6R39WxzHjk9-0-e2306f5abf8cb501c314f3be06d78258)
计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0228.jpg?sign=1738891090-Rt3xqkJVp2RdG15szPUU4fZRpxjL3TXC-0-15da26ea10c9736c76388b2aba00f6ff)
所得两式相减,并利用恒等式(7.9),就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0229.jpg?sign=1738891090-erOgb8tYCotg9RgHCt1AhqElouS78IYX-0-3d45adcdc8ab2fb926b537a3338ac3d8)
因而,在任何单连通区域上,Pdr+Qdy都是恰当微分形式.
例6 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0230.jpg?sign=1738891090-5Ei3oXBXa63C5Smvw6UvPbSLuXP6NLoC-0-cb23064824027f410523a491eea2cab1)
解 上面的方程可以改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0231.jpg?sign=1738891090-yR20XdD9kNQkpyczcRomMzXYTWtRbxYM-0-b6314b88628892630aa6a5df0271684f)
由例5可知,这方程有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0232.jpg?sign=1738891090-M97ajjlvqp4bdaMYZlxhl8ggnQ8uFFPD-0-9872b457ae4bc7a9d702e74057cc4e0e)
下面,我们来求解恰当方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0233.jpg?sign=1738891090-8c9WUKyw5DR2C3PAJgtnEAAfISLwzLBx-0-ba27a9c67188744156280adb32c6b704)
这方程又可写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0234.jpg?sign=1738891090-sruOWxjc8FhrpjzQNbdrviWee9T9lKqT-0-ec412c6b124fa409e77058a4a64a97e9)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0235.jpg?sign=1738891090-dDFhXPOqNvpkL1JxCEmYpB3ALPP0QzqE-0-6276c1e2e8895b406365faf954645f9c)
积分这方程就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0236.jpg?sign=1738891090-qfrjmr6lyAlRFmDfIbxdfWYMt0UrK88I-0-b3190e9267c8cc6c46f92cbc96b5dd23)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0237.jpg?sign=1738891090-2iMRxWHrEtRo7sfy5Ig4hzYZZfUoshVA-0-988d6e0cc6e8b196f4029fbf1f7be833)
实际解题时,常常用到分组求积分因子法.下面,我们就来说明这种方法.
设是微分式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0238.jpg?sign=1738891090-MWqNC1HARiTA1gm5PdoOg1JqjrQHbJoN-0-09f4f2930ea3574107330312e4c5d29e)
的一个积分因子,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0239.jpg?sign=1738891090-ZTO5WJaOOt0wY8hkbTsRSrZwf2P4jQPB-0-53804f4b1ec4e999a08b98b4bda2108f)
如果φ是一个一元连续函数,它能够与函数U复合,那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0240.jpg?sign=1738891090-jcED95G4WMa8GBmK23IdWb1PdFYEunTa-0-eaa336743c4ab24459dcc4764641abe5)
也是微分式(7.10)的一个积分因子.事实上,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0241.jpg?sign=1738891090-RAd55dW28F89Fok9Yt1H0l2n7pzaitOk-0-9f840a3fc94a5b5df53c7953fdd510b3)
这里Φ是φ的原函数.
我们来考查方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0242.jpg?sign=1738891090-hmuL7bcwSER1c9khM7Z7TwfrptLzqGT4-0-90cbcb92919e6adbfde4d49896e856dc)
设这里的两组微分式分别具有积分因子μ1和μ2,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0243.jpg?sign=1738891090-A6lgeDmGJtVEfnmhK6M15SJ0dfNaRLAB-0-2c673be6b2662ca7582508ed58626f7d)
如果我们能选取连续函数μ1和μ2,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0244.jpg?sign=1738891090-HWLLOHMXXedEfA4rxH7RS6N8eQwe439p-0-f00c8c72acf1a84656fa082b7c48d94c)
那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0245.jpg?sign=1738891090-dlRFysjB4o354reU8kKEJiYFJFwE7EpH-0-bf881108752055fd75606514b2a00b08)
就是两组微分式共同的积分因子,因而是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0246.jpg?sign=1738891090-FjpqBm7AFWRWS6FlxIsddYfiMC1JN8zy-0-815c5ab540ee0a3a550c1046def8877d)
的积分因子.
实际解题时,采取灵活变通的做法,往往能更快地凑出积分因子来.
例7 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0247.jpg?sign=1738891090-d23sQXInOXgEkt7Q6a0ED3x7kOkM16al-0-9925e5edca9a4732064e8ee187772297)
解 将这方程改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0248.jpg?sign=1738891090-DmVROIyK77rhNSlEzUquDhL4SAD17vA4-0-aa7f91a2dfb62465e51973ecdf3fcd06)
很容易看出一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0249.jpg?sign=1738891090-N0uKLfWO6ylbMrqCo6HRVGyKHCw7dc2V-0-84ae3a698962dcd9ea32716bb5959435)
用这因子乘方程两边,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0250.jpg?sign=1738891090-cUijf1gRfWUTDpyMj1ni3LOS4JdH0PPX-0-185c983c5a03e5d002c687c0627fbaf8)
我们求得原方程的通解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0251.jpg?sign=1738891090-i4CBaFAIdF32nIUQe5dtJqEawSsoiWYZ-0-05402c5a5f89ec095fa9d489ee68c941)
例8 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0252.jpg?sign=1738891090-7qcuUYIt76mUKdWewxDJQngO6uspUyA5-0-0da422c78a6c7a39f0618fecbc3e37cd)
解 这方程可改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0253.jpg?sign=1738891090-7ZMTzdLtHxNkBlQBz20fQVtjPKNtq0j2-0-7d7ce489f25c1f037c91e0b151e01976)
形状如φ(xy)的函数都是前一组的积分因子.我们选择φ以使φ(xy)也是后一组的积分因子.容易看出,只要取
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0254.jpg?sign=1738891090-1BihJATerIw8vNsnYBcdxjvQcK54Krvj-0-19a4dcec7a438267fcfc5ad3b131c0e4)
就能达到目的.以因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0255.jpg?sign=1738891090-A8WMS2GQ1QrkFjyGfjICU3hvhws3sG0Z-0-c9b0e23523e9a52720530421e982b16d)
乘方程两边就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0256.jpg?sign=1738891090-6exy8IURX3urLYbZ9OQwipJi5MRyuuC0-0-0afa6de9de1998d21183f222a7862951)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0257.jpg?sign=1738891090-khMzAsheY30vC6JUhcGK8JzyUOSD35gF-0-90a2b5de27ed0c77aa7bf82eaac8d41a)
另外,因为我们乘了因子可能会失掉x=0或y=0这样的
解 经检验,x=0和y=0都是原方程的解[4].
例9 求以OX轴为旋转轴的旋转面,使得这样的镜面把放在原点的光源发出的光反射成平行于OX轴的光束.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0259.jpg?sign=1738891090-P29O5cTMag31lZJNbMN5yCKDPHvHmiRt-0-628e866415907b5b36ceb6aed391c240)
图16-21
解 参看图16-21.根据条件应有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0260.jpg?sign=1738891090-agXOinrUjKkqgd0520D4dtFWQfx9HuQz-0-32b4f7b896a9016cf84ddd31299a2176)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0261.jpg?sign=1738891090-Y0v6xmul4SoeAmq06FN9LycNicwaHwzz-0-41d428ba2ed42e11c146a223dc9fbf24)
但
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0262.jpg?sign=1738891090-pwKMbHjRhO4Yn2DVkd7hBSqYdIh4fAxM-0-8ea4e7e37c60e4ba3fceb27294781263)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0264.jpg?sign=1738891090-xuOjzTd0MIq9wzZX3LQyjX1jKLOBgG29-0-746c88e1ffae88d690b01ab29a8bd23a)
解 这个关于dy/dx的二次方程,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0265.jpg?sign=1738891090-vkqIMpAY2IbSFn6zcMOWoXlAEIFmGjOg-0-95a5ddddc6f6c665aa144c1bb6cb9d15)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0266.jpg?sign=1738891090-IByrsVSSFnF8UeyYIy58YLbxGzp6G7FN-0-8154d84828ab47ed02d9c8d243ef8cd1)
容易看出这方程的一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0267.jpg?sign=1738891090-wNZEyXvdKWzjoijrytWGErWCLdr3bk46-0-6620bc8fba9e96a8bf1925951483cb5a)
以这因子乘之,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0268.jpg?sign=1738891090-y2Hd5Qgmk4WVXfUZNY7f6oglshtMUDxt-0-ffec820797ae0c318aaf00a84a2a981f)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0269.jpg?sign=1738891090-rIrQZ5l1bfhqt9JHne9xkVEw8duDqVkO-0-388cb6fe56351d62c8d4df6b2ca03411)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0270.jpg?sign=1738891090-EHrt5vK2YsMbC5oOiMBVwqpsqCgjQNZP-0-5b3c73704f4ef0050cb26b418de062a8)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0271.jpg?sign=1738891090-FOCEBDKl2b22peXwtcvpSvJPG31s4hIE-0-66a15881693e2d8c7b9d38f5e1f45639)
这是以原点为焦点的拋物线族.在学习一元函数微分学时,我们已经知道拋物线具有这种光学性质.现在,我们又证明了逆命题:具有这种光学性质的曲线只能是以上抛物线族中的一条抛物线.