![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第六届全国大学生数学竞赛预赛(2014年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)已知y1=ex和y2=xex是二阶齐次常系数线性微分方程的解,则该方程是________.
(2)设有曲面S:z=x2+2y2和平面L:2x+2y+z=0,则与L平行的S的切平面方程是________.
(3)设函数y=y(x)由方程所确定,求
.
(4)设,则
.
(5)已知,则
.
二、(12分)设n为正整数,计算.
三、(14分)设函数f(x)在[0,1]上有二阶导数,且有正常数A,B使得|f(x)|≤A,|f″(x)|≤B.证明:对任意x∈[0,1],有.
四、(14分)(1)设一球缺高为h,所在球的半径为R.证明:该球缺的体积为,球冠的面积为2πRh.
(2)设球体(x-1)2+(y-1)2+(z-1)2≤12被平面P:x+y+z=6所截的小球缺为Ω.记球缺上的球冠为Σ,方向指向球外,求第二型曲面积分.
五、(15分)设f在[a,b]上非负连续,严格单增,且存在xn∈[a,b]使得.求
.
六、(15分)设,求
.
参考答案
一、解 (1)由解的表达式可知微分方程对应的特征方程有二重根,r=1,故所求微分方程为y″-2y′+y=0.
(2)设P0(x0,y0,z0)是S上一点,则S在点P0的切平面方程为
-2x0(x-x0)-4y0(y-y0)+(z-z0)=0.
由于该切平面与平面L平行,所以相应的法向量成比例,即存在常数k≠0,使得
(-2x0,-4y0,1)=k(2,2,1).
解得x0=-1,,
,所以所求切平面方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1738847333-h3FkIvENnqDpbLNis6Y5APEUfIYKLkb1-0-46b1ab37698b4af2ea6d90f4201ccb6a)
(3)显然y(0)=1,等式两端对x求导,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0004.jpg?sign=1738847333-0aIFHR1SZIAQV72gmb9MzvelztLP79Kk-0-8d3630cc2e89b86316afab23e82fa5af)
将x=0代入可得y′=3.
(4).所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0006.jpg?sign=1738847333-2XcVWV0VlIFh8kw5B21DU4WLBSSn57zn-0-e0e46b6c782d7b90ff150eaf336b6437)
(5)由可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0008.jpg?sign=1738847333-d9yT9sFGeDgVHnzei8iNZFC6dsxPzPqh-0-b7a626dee072fab5f374eba074b85236)
故有,其中α→0(x→0),即有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0010.jpg?sign=1738847333-oSCWs8dq9Bd4SAjUXWJdonRkhyGRFowx-0-a33479ab5a17559411cdc6d378101378)
从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0011.jpg?sign=1738847333-Z1oUGsVXVPLDYNCIZQyE0Ifvfep4m773-0-c56705125bfef8301121c4a0b25b51be)
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0012.jpg?sign=1738847333-DNupdC4qChDYiOG7KN4XnRr7nRnrJHrd-0-0c5a54c74e864941f9b4c483dbcd9a14)
令lnx=u,则有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0013.jpg?sign=1738847333-GTwX8q0jCnS8jBcYncmyfw6nrig7QW87-0-1c7b104652ba141c005d016204d1d92d)
三、证明 由泰勒公式,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0014.jpg?sign=1738847333-IuYkAv5CxELT3atU99sZ0F5wqDFwtcQx-0-8305ae9d79f4484dfd072b31f1b75387)
上面两式相减,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0015.jpg?sign=1738847333-K4zeXCYB29ruLIaLIQToXoS5T44SIU2O-0-7cef1344200c71e427cac32c589434f0)
由|f(x)|≤A,|f″(x)|≤B,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0016.jpg?sign=1738847333-I4z5cTe0FyBFhUqBXpKvIlFEA5aMhyCt-0-bc0d7f6ae3d200fc4603749bc3c9d7ff)
又x2+(1-x)2在[0,1]上的最大值为1,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0017.jpg?sign=1738847333-mYEjDQtz27yLekrjJAzIZn3cHo14llsj-0-11ceb31df9c9b72affe9bdc4fdba379c)
四、(1)证明 设球缺所在球表面的方程为x2+y2+z2=R2,球缺的中心线为z轴,且设球缺所在的圆锥顶角为2α.
记球缺的区域为Ω,则其体积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1738847333-jKE3VNcyDahhY9mD28egLZYOtV2EXZa8-0-785619be333d2dff2f90d665d9e8bf5c)
由于球面的面积元素为dS=R2sinθdθ,所以球冠的面积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1738847333-FmgUhUk3vVqH840wAFlCRk1DCP0LNnk9-0-291684b11f523387cc2041114dab4613)
(2)解 记球缺的底面圆为P1,方向指向球缺外,且记
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1738847333-YXI29OmC6zySOr6mpORokNg5z2Sc3DZU-0-209d9d73813213bdb009c97b25825831)
由高斯公式得.其中V(Ω)为Ω的体积.
由于平面P的正向单位法向量为(1,1,1),故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0006.jpg?sign=1738847333-uCUSOE7yPxSdKvnKnklvNCzT12CIbg0U-0-7a575c97abcb13060b3c82281f76cf52)
其中σ(P1)为P1的面积,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0007.jpg?sign=1738847333-IfHi9TXl9b2I4ebiUGyskivT6ARH0Mn1-0-d137c8527f8e41d9987be4815c563adc)
由于球缺底面圆心为Q(2,2,2),而球缺的顶点为D(3,3,3),故球缺的高度为,再由(1)所证并代入
,
,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0011.jpg?sign=1738847333-Ip4nmfT2pK5K7uopfjEmbFYhmHu1Dkph-0-f42a938d952aaf215e72159b5614756f)
五、解 考虑特殊情形:a=0,b=1.下面证明.
首先,xn∈[0,1].即xn≤1,只要证明∀ε>0(<1),∃N,当n>N时xn>1-ε.由f在[0,1]上严格单增,就是要证明
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0013.jpg?sign=1738847333-UqIYWLtXW9MSVnsPTcK8gq76hKcSAZab-0-fc53b1b034b313b5604e3db6b80dc483)
由于∀c∈(0,1),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0014.jpg?sign=1738847333-sMXaX2c3TOxptY7f65YM6DEEU1FPP7BI-0-3eb18a22037341fbb0bbad4ca74d09a6)
现取,则f(1-ε)<f(c),即
,于是有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0017.jpg?sign=1738847333-2Wcdq2zoUl8kHd3cG06Hv0KeSP0FxoR8-0-08fc809d18027a24f1916aadb18a6dc5)
所以∃N,∀n>N时有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0018.jpg?sign=1738847333-e4bfDLy7huNiAvh3Jb4WoxFgh3J8k5iu-0-b0342e80c675a38acba270644cff912c)
即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0019.jpg?sign=1738847333-kNd2sNHE0d4Hv1oYeWaEqFNxuBVdoL7w-0-635957d43197d519b79172f684b71372)
从而1-ε<xn,由ε的任意性得.
再考虑一般情形,令F(t)=f(a+t(b-a)),由f在[a,b]上非负连续,严格单增,知F在[0,1]上非负连续,严格单增.从而∃tn∈[0,1],使得,且
,即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0023.jpg?sign=1738847333-WCFbCgDwjA7iiJZLekkxZzRwRhfHg6dU-0-5de7b4bc1141e40778babfda236e292d)
记xn=a+tn(b-a),则有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1738847333-pqHNGpJeF09zcp2vvmgfN8fmwBGVQBLw-0-f4967ee664c67c8a00ae2ae9fb45fb29)
六、解 令,因为
,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0004.jpg?sign=1738847333-nLGxTcVacEP694muY8KNtWi7QUSu5HkB-0-aa0e8d225d04e1a61e967df5483b1d24)
记,则
.令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0007.jpg?sign=1738847333-NEj2EMFt5R5raRufKavg4ZF2UpWeG069-0-7c75bcbcc904e8bccc2f15eebdbdedf9)
由拉格朗日中值定理,∃ξi∈(xi-1,xi)使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0008.jpg?sign=1738847333-ZMXUhC7czcR07NL2RwzGc0LwYTySZiYl-0-25d208580c6a6fccdf59b46e3f6d41ef)
记mi,Mi分别是f′(x)在[xi-1,xi]上的最小值和最大值,则mi≤f′(ξi)≤Mi,故积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0009.jpg?sign=1738847333-iByJYyoHVMh7kxV67nW0pe9RDqyGPkJG-0-ebf63986c2251740ae504ae392f8b663)
之间,所以∃ηi∈(xi-1,xi)使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0010.jpg?sign=1738847333-0zrzElnJ8tBfwL32wUEVY8ptudllqBeS-0-63c9766c8b5f2bb17c7e20733b8debad)
于是,有.从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0012.jpg?sign=1738847333-9I210wuzjz5LMMsACZTF7f4aArZJvUgS-0-39d4e2b72f766a4e998049cac5ec9581)