![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第1部分
八届预赛试题及参考答案
首届全国大学生数学竞赛预赛(2009年非数学类)
试题
一、填空题(本题共4个小题,每题5分,共20分)
(1)计算,其中区域D是由直线x+y=1与两坐标轴所围三角形区域.
(2)设f(x)是连续函数,且满足,则f(x)=________.
(3)曲面平行平面2x+2y-z=0的切平面方程是________.
(4)设函数y=y(x)由方程xef(y)=eyln29确定,其中f具有二阶导数,且f′≠1,则.
二、(5分)求极限,其中n是给定的正整数.
三、(15分)设函数f(x)连续,,且
,A为常数,求g′(x)并讨论g′(x)在x=0处的连续性.
四、(15分)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1738847576-vAzI6WfvzU1dRqd24aEgqVPAyPNKGfHP-0-068d469e444ee4691cc5118ebb9b36e2)
五、(10分)已知
y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x
是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
六、(10分)设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
七、(15分)已知un(x)满足
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0010.jpg?sign=1738847576-apOhePVbxcuXHWu7mM8AQ2ZnI1jvv3dE-0-910b04e62ef357a267e27d1972b48993)
且,求函数项级数
之和.
八、(10分)求x→1-时,与等价的无穷大量.
参考答案
一、(1).(2)
.(3)2x+2y-z-5=0.(4)
.
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1738847576-j2GhU1g20BiczxCV6ZEiPpDsxzeYZc3W-0-d1f843a63566a6d1ac8d9601dfb5c22c)
其中大括号内的极限是型未定式,由洛必达法则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1738847576-8vSZFRv8P52zlHiwRLcFmrIzC4gKtvi8-0-f07225f00380b7002a6bf6b36d9d4165)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1738847576-PB8TeRhpFFlcjsOCv0D4jw8nQJAoBCoh-0-37b66895f8bcb47d105bd46d1c3900d5)
三、解 由题设,知f(0)=0,g(0)=0.令u=xt,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1738847576-lbH4lEdLiWcoVvkBOYgr5nsH0M0aPCpw-0-a42e44772a4b8523f61339ffa77d74b0)
而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1738847576-HgVEfXzbcc5jvfWTPk46xGevRNKMQBC3-0-97ba442477bc59fc93d147a59f3eafd5)
由导数的定义有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1738847576-vwwLOc6nthV6qbxLd89aRJcj4nLOnDUp-0-33ef791cb6f6786d8057569ab11777e9)
另外
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1738847576-8edDTs6Inp8mfQs0tohYXmY3hzDUFevY-0-53d2e86a65693ff4c97220298b4fc179)
从而知g′(x)在x=0处连续.
四、证法1 由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1738847576-DmoCXH6qECZQcZu5MybogWY2xApF3nMr-0-7dc40e97fa4c9afbccfa8182d246d90f)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1738847576-0qjBqLK49ujnXHQFBntOwab0GCGstcRI-0-1ed1d087b965c5821f5cbbc2d1b488c4)
(2)由泰勒公式得esinx+e-sinx≥2+sin2x,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1738847576-QLvzQ7VoZbSZWBemUxXAE9SwjOS3vU7L-0-3db2d47a76156258be914385e7e31ad9)
证法2 (1)根据格林公式,将曲线积分化为区域D上的二重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1738847576-5oxDTblkaGXqV3zZu4lSKzprl5hjtcO6-0-3cdf0206e0027af48e7d552218081cf1)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1738847576-P2RnKeKgwQnNf4X40vrvBuY5tEpY6cD6-0-9ad70ca5e5303eefba32b95847e45fc0)
因为关于y=x对称,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1738847576-gOzu8JCG8mX8WLwyFjwvgZdrKawPnMvA-0-65cc95ecf6cdb7d2c4e803da8365dc0f)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1738847576-Y3ej1AyUPAcaMJXtGwh1eUJZ3JgRU9S4-0-fbd6836df2384cf998154e041757672c)
(2)由,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1738847576-y73Umie3g758fT4FhkS9YM6LAPrg11ou-0-9677a9806e9c542b1cddbfecda876332)
五、解 根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.
解法1 设此方程式为
y″-y′-2y=f(x).
将y=xex代入上式,得
f(x)=(xex)″-(xex)′-2xex=2ex+xex-ex-xex-2xex=ex-2xex,
因此所求方程为y″-y′-2y=ex-2xex.
解法2 设y=xex+c1e2x+c2e-x是所求方程的通解,由
y′=ex+xex+2c1e2x-c2e-x,y″=2ex+xex+4c1e2x+c2e-x,
消去c1,c2得所求方程为y″-y′-2y=ex-2xex.
六、解 因抛物线过原点,故c=1.由题设有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1738847576-3TGJwyZVZKY3jrV8mm1p0tEcRRbxY5Vy-0-2cf58b6562b741352b2e43cb6baed8ab)
即,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1738847576-6dD78oVfMUSi24kySx1K3ILPi73nkg8l-0-4be40a03033b6a616e39cc1433a94d90)
令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1738847576-rFJojprNnRpGAUiFlJDnsTTht0vRhr3F-0-bed5ea608f951ff55477beae45523d4e)
得,代入b的表达式得
,所以y≥0.
又因及实际情况,当
,
,c=1时,体积最小.
七、解 先解一阶常系数微分方程,求出un(x)的表达式,然后再求的和.
由已知条件可知是关于un(x)的一个一阶常系数线性微分方程,故其通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0017.jpg?sign=1738847576-4rhTrfRJPxkJiQz0ybkIbhBH8INRfahl-0-b7eada5971e8a7b1866fcfa1c8404aab)
由条件,得c=0,故
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0020.jpg?sign=1738847576-2Yymm9XrLB80h98cl1PPZot8F0j7irnw-0-9f4dfee431a94114a37ba4da6bb0dc11)
,其收敛域为[-1,1),当x∈(-1,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1738847576-ZQwgHG1LGHGaWY3xbEdvriy5HrVq6ged-0-6ad772f5b6dad1a2584f5f96693dfc1c)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1738847576-wZZty3iYQNmnDqLSjuXsYIGOl1SQnf9x-0-5ce1992f0712b3490da153334dad6a39)
当x=-1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1738847576-lq7sm5N5W6guavOXzLQvx1dcVX3lAYvT-0-fc7a08427ca1aa7b0186e05370152242)
于是,当-1≤x<1时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1738847576-TCqCxqgzvh14tz62OGP0LF4KrQY8wvCu-0-7740cb5d9cbd088b0d02ae5b7139f692)
八、解 ,故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1738847576-E4SKEHYXOVl06fQyhlGl0Ep77rRtlliZ-0-039f841f168bc61bde9af9a239b4068c)