![基于加权多维标度的无线信号定位理论与方法](https://wfqqreader-1252317822.image.myqcloud.com/cover/741/36511741/b_36511741.jpg)
5.3 基于加权多维标度的定位方法2
5.3.1 标量积矩阵的构造
方法2中标量积矩阵的构造方式与方法1中有所不同。首先令
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_322.jpg?sign=1738861305-IDayty409DgCOLRVdh1PlfBUZKKpEgi1-0-d19860d07e4d47133deefe4541e55ae3)
(5.96)
利用传感器和辐射源的位置向量定义如下复坐标矩阵[9]:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_323.jpg?sign=1738861305-0GIS9U9KEyVgUbSN6AZ8oGUcAcryitf9-0-c3862c1f06a8b8bfd4cdeb3056566377)
(5.97)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_324.jpg?sign=1738861305-Fya0kKrpj3uyxt2pgJ1xhNiqErqWmlim-0-40b92faee23692861e014ce69ed825dc)
(5.98)
假设为列满秩矩阵,即有
。然后构造如下标量积矩阵:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_327.jpg?sign=1738861305-6YP1ximYfaCQztlN4C2V1mN3j2qTi6Fr-0-41346f7c2634dc6e6732a9026da74a7b)
(5.99)
根据命题2.12可知,矩阵可以表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_329.jpg?sign=1738861305-6gBFzShK5ZFtd3kFFyT0tFSwfecum3zh-0-753a2c430b7201762dc90ce117b3f94c)
(5.100)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_330.jpg?sign=1738861305-fooEXJGx2hSuV9a2Adni2aLhOxwVCbfG-0-3a63e35e51db83b8437bc2342b9e43e8)
(5.101)
式(5.100)和式(5.101)提供了构造矩阵的计算公式,相比于方法1中的标量积矩阵
,方法2中的标量积矩阵
的阶数增加了1维。现对矩阵
进行特征值分解,可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_335.jpg?sign=1738861305-Xj5NpaLQKjAhE7T4iNM6zKWiOF6LBKqw-0-8625e261a6e0f1b06632409fa7396a8e)
(5.102)
式中,,为特征向量构成的矩阵;
,为特征值构成的对角矩阵,并且假设
由于
,则有
。若令
、
及
,则可以将矩阵
表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_350.jpg?sign=1738861305-QIIcUVpYxpxkI6vRFlNttAZnxFv1TCH1-0-0323668382ba8da0761816289085b733)
(5.103)
再利用特征向量之间的正交性可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_351.jpg?sign=1738861305-1LwpMZ28HvKQyh9YhbsYky72dA0HCEJq-0-a01e5a8436e4ffa51aa201927203126c)
(5.104)
【注记5.6】本章将矩阵的列空间称为信号子空间(
也称为信号子空间矩阵),将矩阵
的列空间称为噪声子空间(
也称为噪声子空间矩阵)。
5.3.2 一个重要的关系式
下面将推导一个重要的关系式,它对于确定辐射源位置至关重要。首先将式(5.99)代入式(5.104)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_356.jpg?sign=1738861305-TYxEu1PJq1wE8DFC2E2NxCiifnntCwuY-0-622ce9dd8d5320cc79dddb62f5100d55)
(5.105)
由式(5.105)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_357.jpg?sign=1738861305-7h466VKFWK4Q4ysLp0d9fKaRwuZjCGCZ-0-f83a4b121ab1d7ce8126191f8a95c61f)
(5.106)
接着将式(5.97)代入式(5.106)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_358.jpg?sign=1738861305-ctRAfXk0R0bjQE3ETOgllRgguUBeq9ej-0-7e07f5046e942b6465b229a80469d022)
(5.107)
然后将式(5.5)和式(5.98)代入式(5.107)中,并且同时消除等式两边的虚数单位可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_360.jpg?sign=1738861305-buAM4IAvOd9KrrZI1XNXxRY1YPnhsKVD-0-30e9ea041dd780f1277b4a277b926dfb)
(5.108)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_361.jpg?sign=1738861305-2N58prIz2pDABOv66E4IVXEdplCGUroo-0-5fe93cf47564bb01211904ee3ec64edd)
(5.109)
显然,向量中包含了辐射源位置坐标,一旦得到了向量
的估计值,就可以对辐射源进行定位。式(5.108)是关于向量
的子空间等式,但其中仅包含噪声子空间矩阵
。根据式(5.103)可知,标量积矩阵
是由信号子空间矩阵
表示的,因此下面还需要获得向量
与矩阵
之间的关系式,具体可见如下命题。
【命题5.3】假设是行满秩矩阵,则有
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_371.jpg?sign=1738861305-2QMKw2iS89KGas4YzXun9XwyVEHchmYG-0-b6965706fa6e5fcf210d470b583c785d)
(5.110)
命题5.3的证明与命题5.1的证明类似,限于篇幅这里不再赘述。式(5.110)给出的关系式至关重要,但并不是最终的关系式。将式(5.110)两边左乘以可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_373.jpg?sign=1738861305-qSVySuCFENa6qlDARdErE6l8ZrJqRXHd-0-6aa43c22cf23decfcfb8c14ad2c29d58)
(5.111)
式中,第2个等号处的运算利用了式(5.103)。式(5.111)即为最终确定的关系式,它建立了关于向量的伪线性等式,其中一共包含
个等式,而TDOA观测量仅为
个,这意味着该关系式是存在冗余的。
5.3.3 定位原理与方法
下面将基于式(5.111)构建确定向量的估计准则,并给出其求解方法,然后由此获得辐射源位置向量
的估计值。为了简化数学表述,首先定义如下矩阵和向量:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_379.jpg?sign=1738861305-vSXlKN6v5YNkJlZVfRZIlRpgrkl6MNDc-0-391c4b6b37bceedbfcacbed284e650a5)
(5.112)
结合式(5.111)和式(5.112)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_380.jpg?sign=1738861305-0Sd7x99BPYahLpGRcqWbbqSlZYqeufut-0-453b3e46e415e0bd9be05de1befef37e)
(5.113)
1.一阶误差扰动分析
在实际定位过程中,标量积矩阵和矩阵
的真实值都是未知的,因为其中的真实距离差
仅能用其观测值
来代替,这必然会引入观测误差。不妨将含有观测误差的标量积矩阵
记为
,于是根据式(5.100)和式(5.101)可知,矩阵
可以表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_388.jpg?sign=1738861305-WEKZBHQzdDD4ZukVMYkRMeqSEWhcq6SK-0-f9277fdb033a93d9577f51826a96a68b)
(5.114)
不妨将含有观测误差的矩阵记为
,则根据式(5.109)和式(5.112)中的第1式可知
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_391.jpg?sign=1738861305-BFV0mskiEs8E0vRiFOl9UmdCz3qw2Wxp-0-143f35684b09c13d02435501f45a2f2b)
(5.115)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_392.jpg?sign=1738861305-bYfxuq7ZpIbH9YNrvl5cbq1WAVg1s628-0-91b2200aedb5fa6294ba2f8331ebee34)
(5.116)
由于,于是可以定义误差向量
,忽略误差二阶项可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_395.jpg?sign=1738861305-LuNQJFiiFYVREGlApH5yXx0d1stDQTek-0-8db58cb4da7f73af4ddb14dc713549a6)
(5.117)
式中,和
分别表示
和
中的误差矩阵,即有
和
。下面需要推导它们的一阶表达式(即忽略观测误差
的二阶及其以上各阶项),并由此获得误差向量
关于观测误差
的线性函数。
首先根据式(5.114)可以将误差矩阵近似表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_407.jpg?sign=1738861305-BYvGj43QFTdHEblCqgxYZdhVn6MMmbvj-0-cf54aecbb4148276552906cf4b288afb)
(5.118)
利用式(5.118)可以将近似表示为关于观测误差
的线性函数,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_410.jpg?sign=1738861305-4bamOKB7MSMjym6vcvu3tX4KQqZ0iCqJ-0-d66c43513aca3b8a12d073b24c895c29)
(5.119)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_411.jpg?sign=1738861305-kOUxq3CziHptlg36UC92napVvME9doAF-0-799c4f23bbbe57a20d35c36305ac4822)
(5.120)
其中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_412.jpg?sign=1738861305-W6bCtfXK3qaOSzzN0v5vOzwcJjjZo3bH-0-9fedcd6703f44d0e198537eeabc44457)
(5.121)
式(5.119)的推导见附录B.4。接着利用式(5.115)和矩阵扰动理论(见2.3节)可以将误差矩阵近似表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_414.jpg?sign=1738861305-9khX7CJobUhBcCFqjvl63UPVybwirswF-0-05bb6f281b0cca4d8ea782a946861a7b)
(5.122)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_415.jpg?sign=1738861305-APwoDNitjsevbsniVVRgE3B6MVNgOHaq-0-8274b2174deeb01e02e8963ec10f9ff1)
(5.123)
结合式(5.122)和式(5.123),可以将近似表示为关于观测误差
的线性函数,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_418.jpg?sign=1738861305-XiT4fouMIYilbKbkhkVW9iFmpFT2LKQ4-0-0d0915f5489cf130f09ce5dd1a56ce4f)
(5.124)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_419.jpg?sign=1738861305-gby7ZdSV374RKdf8wzZp1TZuyhwEbomJ-0-2abab31c7df623c98c080f751703868e)
(5.125)
其中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_420.jpg?sign=1738861305-W80MxFYhzHaQbDJKtkySw6pljjpAhEAL-0-57c75b877102967794614ee5e8a5ef7a)
(5.126)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_421.jpg?sign=1738861305-nzqmYLfnlD1czf90bACn7F7zip1RGqXu-0-b907801e0b2fbdfbf205981540f48316)
(5.127)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_422.jpg?sign=1738861305-LJv1fA5h6cuf43hY1jNLZsj60SCeeY9x-0-1a65aef67ef970de4a91d87f7ce27c44)
(5.128)
式中,。式(5.124)的推导见附录B.5。
将式(5.119)和式(5.124)代入式(5.117)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_424.jpg?sign=1738861305-bsN8zQ7ANUXQkznXzjXRvB9AdcOKQ4nj-0-e98033668ea33a48a21ed37c7b42f6e9)
(5.129)
式中,。由式(5.129)可知,误差向量
渐近服从零均值的高斯分布,并且其协方差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_427.jpg?sign=1738861305-9wwIkBLP6Lquimji4ZmgIkQbaJ5C0RFH-0-f149e87b932012564486e409d8ceff9b)
(5.130)
2.定位优化模型及其求解方法
一般而言,矩阵是列满秩的,即有
。由此可知,协方差矩阵
的秩也为
,但由于
是
阶方阵,这意味着它是秩亏损矩阵,所以无法直接利用该矩阵的逆构建估计准则。下面利用矩阵奇异值分解重新构造误差向量,以使其协方差矩阵具备满秩性。
首先对矩阵进行奇异值分解,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_435.jpg?sign=1738861305-T4qKF1pmoCLO2rbxiQWnYuZqcQtF4VPR-0-006169579ac6448b6b352e5d972429d5)
(5.131)
式中,,为
阶正交矩阵;
为
阶正交矩阵;
为
阶对角矩阵,其中的对角元素为矩阵
的奇异值。为了得到协方差矩阵为满秩的误差向量,可以将矩阵
左乘以误差向量
,并结合式(5.117)和式(5.129)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_445.jpg?sign=1738861305-taYKegZSdfg0IHIRFdHVUHxRz9TlKnji-0-f6a36f20af9f2c41db8c31123aa6a60e)
(5.132)
由式(5.131)可得,将该式代入式(5.132)中可知,误差向量
的协方差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_448.jpg?sign=1738861305-QZyLJO6gKUylmER7ylzVlRp3d7dX5PNc-0-6ee502c4923fca735ca1141a2b798081)
(5.133)
容易验证为满秩矩阵,并且误差向量
的维数为
,其与TDOA观测量个数相等,此时可以将估计向量
的优化准则表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_453.jpg?sign=1738861305-wMWooQRbdEqWzv1ikZy8KUyixytdbdtS-0-24eb5b7440cb3dbfb65a1d04402ccf84)
(5.134)
式中,可以看作加权矩阵,其作用在于抑制观测误差
的影响。不妨将矩阵
分块表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_457.jpg?sign=1738861305-wrKVttbqbcz2A7DO8TWY8w47BAoSbf9E-0-c40de3ba027e358a81a3296099d83502)
(5.135)
于是可以将式(5.134)重新写为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_458.jpg?sign=1738861305-Gve4gfMgPF218YrMb95rGmo0R2h0DzVT-0-adbb10a9f1ebb9f1af95dfbe6224d1cb)
(5.136)
再结合二次等式约束式(5.49)可以建立估计向量的优化模型,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_460.jpg?sign=1738861305-uXMbpNZKCV3eJvclh64b1Z51E5O9i75D-0-24943c24b8b5041fb8e307e4046e51ca)
(5.137)
显然,式(5.137)的求解方法与式(5.51)的求解方法完全相同,因此5.2.3节中描述的求解方法可以直接应用于此,限于篇幅这里不再赘述。类似地,将向量的估计值记为
,根据式(5.17)中的第2式可知,利用向量
中的前面3个分量就可以获得辐射源位置向量
的估计值
(即有
)。
【注记5.7】由式(5.130)、式(5.131)及式(5.133)可知,加权矩阵与未知向量
有关。因此,严格来说,式(5.137)中的目标函数并不是关于向量
的二次函数,针对该问题,可以采用注记4.1中描述的方法进行处理。理论分析表明,在一阶误差分析理论框架下,加权矩阵
中的扰动误差并不会实质影响估计值
的统计性能[10]。
图5.10给出了本章第2种加权多维标度定位方法的流程图。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_474.jpg?sign=1738861305-qyR0YQivz4CZE8Ip5oI9tEi6bcBtkW7f-0-923cc8dea8f5674a456bf8b78bc5b7a0)
图5.10 本章第2种加权多维标度定位方法的流程图
5.3.4 理论性能分析
下面将给出估计值的理论性能。需要指出的是,5.2.4节中的性能推导方法可以直接搬移至此,所以这里仅直接给出最终结论。
首先可以获得估计值的均方误差矩阵,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_477.jpg?sign=1738861305-lSSfIjn4J38owx6e4wNkCQLtCJgGxWLu-0-ec5fb0d139989f017e380b9c5e8c5ec4)
(5.138)
与估计值类似,估计值
也具有渐近最优性,也就是其估计均方误差矩阵可以渐近逼近相应的克拉美罗界,具体可见如下命题。
【命题5.4】在一阶误差分析理论框架下,。
命题5.4的证明与命题5.2的证明类似,限于篇幅这里不再赘述。
5.3.5 仿真实验
假设利用6个传感器获得的TDOA信息(也即距离差信息)对辐射源进行定位,传感器三维位置坐标如表5.2所示,距离差观测误差向量服从均值为零、协方差矩阵为
的高斯分布。
表5.2 传感器三维位置坐标 (单位:m)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_483.jpg?sign=1738861305-rLPy0GIBMbd6zhLPq84vx2ZlGdriek0K-0-5f4a6c4a70c2653afb2d75a48adc3ec2)
首先将辐射源位置向量设为 (m),将标准差设为
,图5.11给出了定位结果散布图与定位误差椭圆曲线;图5.12给出了定位结果散布图与误差概率圆环曲线。
然后将辐射源坐标设为两种情形:第1种是近场源,其位置向量为(m);第2种是远场源,其位置向量为
(m)。改变标准差
的数值,图5.13给出了辐射源位置估计均方根误差随着标准差
的变化曲线;图5.14给出了辐射源定位成功概率随着标准差
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_494.jpg?sign=1738861305-XwTVThN1FtW8gQ5co3pcRujba45iuax6-0-2bd9f8e96858ad34c25adafae0ed2e81)
图5.11 定位结果散布图与定位误差椭圆曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_495.jpg?sign=1738861305-7XJkscZke7TGEfKPl06B03MBCSHARdgB-0-22cd9857f7e6df60b3f32bb159838d7c)
图5.12 定位结果散布图与误差概率圆环曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_496.jpg?sign=1738861305-3T3UbAYgi4S1zD1UgtnjE4dy7Kvy2nL3-0-ff7d1948c2d7fc41fc65cb6cad2935f8)
图5.13 辐射源位置估计均方根误差随着标准差σt的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_497.jpg?sign=1738861305-8Qg6JPMn5bSD6v2PJWJj8nEN5j2bIy2n-0-be076a38156993ca88050eff9d981d26)
图5.14 辐射源定位成功概率随着标准差σt的变化曲线
接着将标准差设为两种情形:第1种是
;第2种是
,将辐射源位置向量设为
(m)。改变参数
的数值,图5.15给出了辐射源位置估计均方根误差随着参数
的变化曲线;图5.16给出了辐射源定位成功概率随着参数
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_506.jpg?sign=1738861305-0YFK677UmuAaK5q2BEDMGyvyKuSbrT8W-0-e9019e32af89c23dfbefb9aa658715de)
图5.15 辐射源位置估计均方根误差随着参数k的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_507.jpg?sign=1738861305-V1UMfeO2CqDZ4VIDMd05MxvxfkLhCNHC-0-dca6a926e072d4a27beab808b3353e9d)
图5.16 辐射源定位成功概率随着参数k的变化曲线
从图5.13~图5.16中可以看出:(1)基于加权多维标度的定位方法2的辐射源位置估计均方根误差同样可以达到克拉美罗界(见图5.13和图5.15),这验证了5.3.4节理论性能分析的有效性;(2)随着辐射源与传感器距离的增加,其定位精度会逐渐降低(见图5.15和图5.16),其对近场源的定位精度要高于对远场源的定位精度(见图5.13和图5.14);(3)两类定位成功概率的理论值和仿真值相互吻合,并且在相同条件下第2类定位成功概率高于第1类定位成功概率(见图5.14和图5.16),这验证了3.2节理论性能分析的有效性。
下面回到优化模型式(5.137)中,若不利用向量所满足的二次等式约束式(5.49),则其最优解具有闭式表达式,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_509.jpg?sign=1738861305-teQyJ6an2q5j6TfO0iq1YeO7Nvw7zCe0-0-10c98d2cbe4bdc606b0ef7032a43c036)
(5.139)
仿照4.3.4节中的理论性能分析可知,该估计值是渐近无偏估计值,并且其均方误差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_510.jpg?sign=1738861305-VqiJEyF3X2V8u0XsbdQ7djkIxM4ckRjt-0-04b463e17094588af00d92c455c49698)
(5.140)
需要指出的是,若不利用向量所满足的二次等式约束,则可能会影响最终的定位精度。下面不妨比较“未利用二次等式约束(由式(5.139)给出的结果)”和“利用二次等式约束(由图5.10中的方法给出的结果)”这两种处理方式的定位精度。仿真参数基本同图5.15和图5.16,只是固定标准差
,改变参数
的数值,图5.17给出了辐射源位置估计均方根误差随着参数
的变化曲线;图5.18给出了辐射源定位成功概率随着参数
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_517.jpg?sign=1738861305-KVwmRCSqa6lAqEljXPlnBD39EavUJeEF-0-1eaf14394391c8f72ef7c50fb3bc1df9)
图5.17 辐射源位置估计均方根误差随着参数k的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_518.jpg?sign=1738861305-gBIaVQX2TWDb94HoURhB9NimlIFzh6dZ-0-a62b2b38b7dbcd8cf6570636bdeb5e7e)
图5.18 辐射源定位成功概率随着参数k的变化曲线
从图5.17和图5.18中可以看出,若未利用向量所满足的二次等式约束,则最终的定位误差确实会有所增加。
[1]若信号传播速度已知,则距离差与到达时间差是可以相互转化的。
[2]这里使用下角标“tdoa”来表征所采用的定位观测量。
[3]本节中的数学符号大多使用上角标“(1)”,这是为了突出其对应于第1种定位方法。
[4]也不会实质影响估计值的统计性能。
[5]由式(5.17)中的第2式可知,向量中的第4个分量一定是负数。
[6]这里使用下角标“tdoa”来表征此克拉美罗界是基于TDOA观测量推导出来的。
[8]参数k越大,辐射源与传感器之间的距离越远。
[9]本节中的数学符号大多使用上角标“(2)”,这是为了突出其是对应于第2种定位方法。
[10]加权矩阵中的扰动误差也不会实质影响估计值
的统计性能。