![信息流推荐算法](https://wfqqreader-1252317822.image.myqcloud.com/cover/888/51709888/b_51709888.jpg)
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_01.jpg?sign=1738942759-sNWrqKz7jKlDnsFCQv10quV3peF3Kyiv-0-e31903b1881b9ea9f56221f8411a3184)
图3-14 Item2vec和SVD的可视化效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_02.jpg?sign=1738942759-DdhZqSLT9R5iweTCvz5l9mpEJRL9MzWR-0-b05ecbc86567c9973e35c2e615559ab8)
图3-16 视频观看倾向与发布时间对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_01.jpg?sign=1738942759-fMKf0LmmB70967sdnE7pwD5ihIG3lAMw-0-c02aab48ed893d6bb7da0137be14dddf)
图3-30 Node2vec效果可视化
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_02.jpg?sign=1738942759-B21PiUNorTZhCk3CtH8XoDyGz0COtVVW-0-f70b2655e2ff3bc13c84ae211d3ef994)
图3-37 DIEN模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_01.jpg?sign=1738942759-UxKWD4142pfaz2qN3yFRkNtAfpnzS2vn-0-93ca4f97619a7eadfb60128e2450c8b7)
图4-2 不同α系数的衰减速度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_02.jpg?sign=1738942759-5FJmPiphDboU3QXpdjnuxhaGSdRooUhl-0-f88b65b424a225d867ea42218c768b94)
图4-20 PRAUC与Hit Rate在粗排中的区别
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_01.jpg?sign=1738942759-E8LLGatR2PyyMlREUJZQIXqC22IaoQVS-0-4c5c13b093f161587fb021408b2cbfbe)
图5-15 不同正则化方式的训练和测试误差
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_02.jpg?sign=1738942759-5GR4jtySpQl0iYRAl0eblfMEKrXqgmVk-0-99245edc83e9a67075fcb851ddd955f3)
图5-16 DIEN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/7_01.jpg?sign=1738942759-VHKInyHr64lXPoOimzabrpIVMcKsdwdH-0-64ee4bdde952fef20c23e10cd64e325b)
图5-18 DSIN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_01.jpg?sign=1738942759-PmSs2rkSlI0gyPy05JfJ265xnuRvqAiH-0-ac5d3bab2375d585b9e2fdd9a7b728b3)
图5-20 工业级展示广告系统的实时点击率预测系统
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_02.jpg?sign=1738942759-nEJhuPEKijNtOAYdjnr9IyxsiIeJdgRB-0-d9d036b6e9dae8cbe195ff492865edba)
图6-3 高斯过程拟合函数的示例
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_03.jpg?sign=1738942759-EY1tziIYdMnyayFfuSByvrZDQvlchVA0-0-368eb50a2c172d6cc3c46992cf297617)
图6-7 (1+1)-ES和(μ+λ)-ES的对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_01.jpg?sign=1738942759-Z64sextsHCXv156B3rdi0aWMgmMYXNUv-0-96db693992588be03a669d1332d25a8e)
图6-8 OpenAI ES优化的示例一
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_02.jpg?sign=1738942759-dGVl6o2JvvnjyHOBwtEvkm178oavb6Hb-0-8ce15c3aaefc2d835822407054a4a7a7)
图6-9 OpenAI ES优化的示例二
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/10_01.jpg?sign=1738942759-sJ9AiuOvQYGgG282XuxKHX5HoR3POyYI-0-eb6cbf06ac816bd1ac8913ac932fcb83)
图6-16 多个强化学习方法在4种类型上的动作分布
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_01.jpg?sign=1738942759-3G8VaLZzeW5IO2i9VvgJydns7o5TgWL2-0-194f28f94e3f56b2eed296ae441c88da)
图7-3 DLCM在不同相关文档上的优化效果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_02.jpg?sign=1738942759-Oo0r3JAzw867wQjnLwRLiJbNG5Xitvej-0-727ddff1efdae2d518377935c2cb2af0)
图7-8 Seq2Slate的计算流程
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_01.jpg?sign=1738942759-fh3seO8RKoNjZeHLyabQOBPY0YEbi1N2-0-db19717f21c6432cd3debcaa3aea6eaa)
图7-10 GRN中的Evaluator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_02.jpg?sign=1738942759-dh9toxFfryd8wk3k0fWkfdkisR7jFXOt-0-3d32a85ca9868b886888003e67a9aa9c)
图7-11 GRN中的Generator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_01.jpg?sign=1738942759-ycmMa5acqwJL0PjOLo7AOnX0YpEKt6uE-0-0e149a1ae2bb7c6580908270e37d55cc)
图7-14 电商场景中的案例对比:list-wise模型与Permutation-wise模型
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_02.jpg?sign=1738942759-jSRRUKhhvpk1KN1Sbh7b73mpdv09fFqt-0-6736724116dd62472ee0410330a672a5)
图7-16 PRS框架的整体结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_01.jpg?sign=1738942759-EzVKVXvGBhDZeYTVOWD0PEGJAvpb61dR-0-3bfc2e9a4506390f24ba0172e3c590cf)
图7-17 基于Beam Search的序列生成方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_02.jpg?sign=1738942759-RFtd0VPdbe5vQw9XR0wPitYtqadP339p-0-e6e58563df50ad91c015baa2bffe9567)
图7-18 DPWN的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_01.jpg?sign=1738942759-OAlhbVoyxQ5cHTpUeeYnbzpno9rG8hSQ-0-4b7d338007375d97259c6f0b7b07c5c7)
图7-19 流行的端云协同瀑布流推荐系统框架
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_02.jpg?sign=1738942759-syYFWJ5YhLQ0YMe0wzJmYvLGeUJx2NRT-0-6ff860a3b3e3c40b65b9b1b70bb1a026)
图7-22 EdgeRec中的异构用户行为序列建模和上下文感知重排的行为注意力网络
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_01.jpg?sign=1738942759-t9Ua3LflrMuU2vZOcS19XmQhsyLXFHpL-0-68cfc2e4e783739e4104beb3b6b7f4a0)
图7-24 减少模型参数空间的MetaPatch方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_02.jpg?sign=1738942759-XPuPMel73Y0vO3A8JvAPkD1xtXXzwwv1-0-bbf9496e3646ad473ac5fecc914836cf)
图7-25 增强云端模型的MoMoDistill方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_03.jpg?sign=1738942759-HCgzj9AyHUh4SobqJ49UI667MR7CETaK-0-c06f201f766c116ed938617a6ef90145)
图7-26 DCCL-e和DIN在所有细分用户群上的推荐效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_01.jpg?sign=1738942759-hSQZcpJeSiC8IceeXAPVvMGFVh8ofTDd-0-c088a6fe807c880ad6ce57a9a818dd4f)
图8-3 负采样校准前后的概率密度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_02.jpg?sign=1738942759-B5yQGnD6BwhTxJCcQJNEMRv5dJzD5QOj-0-bc05934b7306ee876b0763d628c847ae)
图9-2 DropoutNet的相关实验结果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_01.jpg?sign=1738942759-YuBy2jKxvujE91oPEPeTRBMBxZR9Hl1e-0-37cf26356f7f9891241a6a85e1acb46f)
图9-5 MWUF算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_02.jpg?sign=1738942759-xNoQmjof6K1Ojnm7ep39JXpYKsWJtsZx-0-49c7a2b6cf44c4a444d81a4732037005)
图9-7 Cold & Warm算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_01.jpg?sign=1738942759-khZ8nTktMysW1yHDkq3BS60kK9S1ZAFa-0-0d5f4f63e192d7cc79d8305fd1f6d56b)
图9-9 冷启动和非冷启动任务的效果变化趋势
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_02.jpg?sign=1738942759-DbhIrnPomdUks7PSIA9bSHLWhmXRc555-0-1abdfadf43f3f249ed02333ef565816a)
图9-11 数据偏置的说明和它对于模型训练的负向影响
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_03.jpg?sign=1738942759-3oo86EPhg5rQ4QetxLBhxZuIKMuNyUco-0-e5e0f4cb38b512f420676fa0732844c3)
图9-17 CIKM Cup 2016数据集的相关分析
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_01.jpg?sign=1738942759-HvzdgIuMC11e1D3QKHxtP3qeYSCeLvUI-0-8f6e643cfcaf5a9a1a3281a07792c346)
图9-19 属性间的相关性在源领域和目标领域是一致的
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_02.jpg?sign=1738942759-7XwHvcf9fFTLPwJDpdi3L22ta9bY9Npu-0-4c59550711923bcc87cfecc668398507)
图9-20 ESAM算法中多个损失的设计意图
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_01.jpg?sign=1738942759-xj0iZMsvIgzSVApEN8bfC45wCRcVZV2U-0-093a8f30b1acce24feaa7adf8c10f464)
图9-21 T-SNE对数据特征分布的可视化,红色和蓝色分别表示源领域和目标领域
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_02.jpg?sign=1738942759-I57DQjEWzNVgzswQNX0FhTCLX6XllJRm-0-0d91dd75bae73f1c94270b6c8f2aa43a)
图9-22 真实数据上的相关性得分分布对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_01.jpg?sign=1738942759-fcxumGBpkkwS6bZylXPZZOxCpodErmnd-0-50f8e80eb94d9886fdd5b595e72235c1)
图9-23 解决协同过滤中长尾问题的对抗网络模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_02.jpg?sign=1738942759-pQhKwugjpEkQVuGkCqGVqOBf2QXXM47D-0-803d65eef9f71db0a1a2953603b9de99)
图10-6 层与桶的流量关系