
会员
Python3智能数据分析快速入门
李明江 张良均 周东平 张尚佳更新时间:2019-07-26 14:39:36
最新章节:课后习题开会员,本书免费读 >
本书作者从实践出发,总结了智能数据分析常用的方法,深入浅出地介绍了智能数据分析编程过程中的相关知识。书中涵盖Python环境搭建、Python基础语法、控制语句、函数、面向对象编程、数值计算、数据处理、绘图、模型构建等内容,还配套提供了程序代码及数据。此外,每章的最后均提供课后习题,帮助读者快速掌握Python的使用方法。
品牌:机械工业出版社
上架时间:2019-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
李明江 张良均 周东平 张尚佳
主页
最新上架
- 会员
机器学习教程(微课视频版)
本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字 具身智能:人工智能的下一个浪潮
自人工智能(AI)的概念诞生之日起,科学家们就热衷于探讨它的发展路径。第一阶段毫无疑问是计算智能,经过半个多世纪,AI在运算能力和记忆方面早已超越人类。第二阶段,是感知智能,让机器可以看得懂听得懂这个世界。科学界认为,尚未到来的第三阶段,是认知智能,甚至提到一个词:认知时代。我们来到大模型时代或者是生成式人工智能时代了吗?如果我们此时此刻正身处这个时代,那上一个是什么时代?有人说,大规模预训练已经计算机11.3万字- 会员
机器学习实战(视频教学版)
《机器学习实战:视频教学版》基于Python语言详细讲解机器学习算法及其应用,用于读者快速入门机器学习。《机器学习实战:视频教学版》共分12章,内容包括机器学习概述、Python数据处理基础、Python常用机器学习库、线性回归及应用、分类算法及应用、数据降维及应用、聚类算法及应用、关联规则挖掘算法及应用、协同过滤算法及应用,最后通过3个综合实战项目(包括新闻内容分类实战、泰坦尼克号获救预测实战、计算机10.1万字 - 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
AI自媒体写作超简单
本书结合作者10多年写作经验,基于AI应用ChatGPT、文心一言、智谱清言、讯飞星火、通义千问、Kimi等,详细介绍了使用AI写作的流程、方法和技巧,旨在帮助想要通过内容输出加速个人发展的读者,快速掌握AI自媒体写作的方法和技巧。本书分为11章,涵盖AI自媒体写作概述、AI提示词、AI起标题、AI做选题、AI角色化写作、AI套路化写作、AI仿写、AI模块化写作、AI改写、AI润色、AI智能体写作计算机9.2万字 - 会员
DeepSeek原理与项目实战:大模型部署、微调与应用开发
DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合计算机17万字 - 会员
Python视觉分析应用案例实战
本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
洞察AIGC:智能创作的应用、机遇与挑战
《洞察AIGC:智能创作的应用、机遇与挑战》内容分为3篇:第1篇AIGC的蜕变讲述AIGC的发展历史及其背后的智能;第2篇AIGC的应用讲述AIGC在文学创作、日常办公、知识管理、科研出版、工业制造、健康医疗、金融服务、品牌营销领域的应用现状及常用工具;第3篇AIGC的机遇与挑战讲述AIGC的资本与技术前景,同时提出需要注意的风险。计算机13.9万字