![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
5.2 矩形介质波导[57~61],[66]
与平板波导仅在一个方向对光传播进行约束不同,矩形介质波导将在x和y方向对光加以限制(假设光沿z方向传播)。矩形波导的分析较为复杂。目前还没有一种严格的分析方法可以得到矩形波导的导模解析解。比较有名的分析方法包括马卡提里近似解法、有效折射率法、微扰法、圆谐函数展开法,以及有限元法等数值解法。
5.2.1 马卡提里近似解法
矩形介质波导结构如图5.2-1所示。这个波导由九个区域构成,其中四角的阴影区可不考虑,另外五个区域的折射率分别为n1、n2、n3、n4、n5。1969年,马卡提里提出一种分析矩形波导的方法,假定导模远离截止条件,导模携带的大部分能量被约束于区域I进行传输,在邻近的II、III、IV、V区域能量很少,而在对角的四个区域VI、VII、VIII、IX能量更少。该方法忽略对角四个区域的场分布,并且只考虑芯层四周界面的边界条件。当光被高度约束在芯层传播时,马卡提里方法可以得到很好的结果。另外,假定光场的纵向分量远小于其横向分量,导模波形近似为TEM波。在这种情况下,可以将导模分成横向分量为Ex、Hy的模式和横向分量为Ey、Hx的
模式。
模式表示电场振动方向沿x轴,并且光场沿x、y方向的极大值数目分别为m和n的一种场分布模式,
也有类似的含义。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0006.jpg?sign=1739315299-fB6Tg2GpsrcRBEErdqikIdAisCw17Gza-0-c19d28db0ec51ae4bd510db43c4b1776)
图5.2-1 矩形介质波导
1.模式分析
模的电场沿x方向振动,Ey=0。沿z方向波导均匀,且∂/∂z=iβ。时谐电磁波的电磁场方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0009.jpg?sign=1739315299-dEREHiRXivnsyzck5gBCqCkkcDV8o5c1-0-7a308a6f71cad16f6a961bd80a252ae4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0010.jpg?sign=1739315299-kW6N27MpfAFcpMw8j2C4h8ThLcoPFMPP-0-d3808ee222be06c441fa1ded313aacb0)
将式(5.1-1)代入式(5.2-1),计算后写成分量形式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0011.jpg?sign=1739315299-osV5GlvFyKM78z3sb3bcKs5YWcYfbdoQ-0-9736be7506a474e6c311e5dbd6174345)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0012.jpg?sign=1739315299-Jzk96OHJzcaJ1LlxkHnBkJGkiCEpx6ij-0-d57a228852cbfc66c2a1a08506d15343)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0001.jpg?sign=1739315299-sE581sRwun7d45hF6qlifVNuslhqUEhf-0-1a7f6d33dc3b191f9e5c8907e509b2dd)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0002.jpg?sign=1739315299-b6luKQpQQib9BMuXADT7GXnfQnfGizit-0-3c3857fa1670600ebb0c3356a22e4b93)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0003.jpg?sign=1739315299-EpGrAW7CZTvvipTnzK1gHAWiWesm4zw7-0-c37a7f134fd2f4d343602fbc8b72a0e2)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0004.jpg?sign=1739315299-7MbZbnazJQNtmloRzRGx0rMDC7ZODpWP-0-d6ec8228752f0d14ceab85b8c9ace3c1)
由式(5.2-2)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0005.jpg?sign=1739315299-Zta5eRFyWG8AEh5MqabNsklm412C9NMU-0-9a0f4ad7e34f6b81d079ab77c67e499f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0006.jpg?sign=1739315299-K1MVOXXDj1VgnvyXquDdyRwFjPcJw60S-0-48e0586f1688bd6925e880b6952346e7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0007.jpg?sign=1739315299-AXb77FBi1VGCVTVzfbkBExEqd9n0wdoH-0-eb1a4750b39203fe3f97dba0daa227bf)
另外,根据
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0008.jpg?sign=1739315299-c5cUCdjyovEkDQxXg4Ac837l1hqGu7yn-0-2b67e34a72eb024ce1de9a98c829e357)
将上式表示成分量形式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0009.jpg?sign=1739315299-0gaDQEGHGs3EJr5Eg3DxryokBzzISQ9x-0-48cc5ce082f34934c15359083f729a1e)
于是得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0010.jpg?sign=1739315299-6NOWgcgAj0RSFvqXu89uaQzWyRiKtKB4-0-3174a52e90589ecebdbc62f0abf2a666)
其中,用到条件
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0011.jpg?sign=1739315299-CR5NrCDT8UEiQMRmtoxsXzQLJCjFKFjw-0-33a47f40d28fae9d226d549c027b6213)
即假定在同一介质中,折射率不随x坐标变化。
将式(5.2-4b)、式(5.2-4c)代入式(5.2-3a),经过整理得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0012.jpg?sign=1739315299-kTh2Z6fxbCJ9mU9U68NQfKhBVWIDuxR7-0-4bea2267f4601ad6bee186f89cc2880b)
对于导模,仅在芯层具有振荡解,而在共边的四个相邻区域具有指数衰减形式,在对角的四个区域可视为零。据此,可以将方程(5.2-9)的解分区域表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0013.jpg?sign=1739315299-9qtVWrz9VwXNk4q7quuPOeRfvVKrI5Rr-0-ea485595100a92552be8c89c5ec85a41)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0014.jpg?sign=1739315299-2caP6JafhVmpdpaQHyKWk3PEQp2uiWWq-0-04c5d68b4f2ce8b4a19b438efab855be)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0015.jpg?sign=1739315299-gdD2dWXmTv42IG56aWikaxq7Io3quHZE-0-238e24eb75e7321a049d641f45e81d96)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0016.jpg?sign=1739315299-7gNwyPg0gpWOfXJJZfbSlLWcNTUoZnBS-0-b062262d51f302282cd3d639c689ccd5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0017.jpg?sign=1739315299-nFRpFsw8nY7MhOi184HxDHA16l9ebgbr-0-47c32f966d1df54792d278767af0df0b)
式中,C1、C2、C3、C4、C5为振幅因子;φ1、φ2为待定的初相位常数;kx、ky为传播常数的x、y分量;α2、α3、α4、α5为光场在波导芯层共边的相邻区域与边界垂直方向上的衰减常数。波导芯层沿x、y方向的尺度分别为2a、2b。将式(5.2-10a)至式(5.2-10e)代入式(5.2-9)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0018.jpg?sign=1739315299-muHxxgyYLKHMdWUPeYIUlAfB0eT3198u-0-e7791153724c7d5a9c6ba77a257e93a2)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0019.jpg?sign=1739315299-O6q5gbyBW3EyOTEkfinnrrFhGD7DybwI-0-7e20ff3ad70e5caa1c64e78fbc0ce001)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0001.jpg?sign=1739315299-CDfYR7qSFMcP8oEOjVrEVak8EfB4VUVk-0-1e2d2e0113d636ae716dff2fd1122509)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0002.jpg?sign=1739315299-4cShm6K9TxSCRmY5tra1ys8EDHCbhBC7-0-b432ed182002b6b121d189acbc1a7ddb)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0003.jpg?sign=1739315299-L6UWOZafyKGRRcQka8EVfsLDHTkSl6my-0-d604062323c9c2a32d488fab1438176b)
由式(5.2-11a)分别减去式(5.2-11b)、式(5.2-11c)、式(5.2-11d)、式(5.2-11e),并整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0004.jpg?sign=1739315299-QQDZXItCenY0nowywR1RczTj6J7kA0Z8-0-3f3ecf71eb5ee9372749ae5cb0957849)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0005.jpg?sign=1739315299-GUUF5CSisG74Ya3ftX4YU8t7bYJHomx5-0-6f1a23becdaf1e82c9863e0f91e6b753)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0006.jpg?sign=1739315299-ERBlvNsZKXSFLvsz3dQgRQ7i2bJKfM4c-0-9705796fe6503a3b299919be05be67fa)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0007.jpg?sign=1739315299-jewCF6mAcgxOGtYMYtPgjQ1YaspkIVXw-0-392bfded9bc1ec01208726e504c16b07)
进一步利用边界条件,可以得到模的本征方程。
1)在x=±a处,Hy和Ez连续
利用Hy和Ez在x=a处的连续性条件,将式(5.2-10a)、式(5.2-10d)代入式(5.2-7)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0009.jpg?sign=1739315299-73qbAKyVrbVC279za7aufHhjMagXAfC5-0-7a07c54d67d9cbba0e3bba5222442ade)
将式(5.2-10a)、式(5.2-10d)代入式(5.2-4b)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0010.jpg?sign=1739315299-mYh8nyMt9yypN4fPh7VtIDqn7bNKrqnV-0-96a5f308a7cb9cbf8b8efa4321549422)
式(5.2-13)与式(5.2-14)相除可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0011.jpg?sign=1739315299-37Le359VNgwWPt6dgxsEaZ8yvilwPq65-0-35adff1cdee4a26ff75fa2a17fba9608)
利用
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0012.jpg?sign=1739315299-psXGcirLGglqNUoTxm2O7qnFuqSYAzqO-0-03bf8ab718e50d9c14f6c3a0cd058eec)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0013.jpg?sign=1739315299-cUFxBt3uOvtJmrkJcTvXVD3iVRVhzQdc-0-53819a2f9100142c63cef44d841bbbe7)
将式(5.2-16)代入式(5.2-15)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0014.jpg?sign=1739315299-NaTLUxCSzDMfgm2G9BeKkPXYDPqsd2AB-0-cfb622f6ebc616d16a8cbd44fee84ade)
同样方法,在x=-a处,利用Hy和Ez的边界条件可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0015.jpg?sign=1739315299-j8gtvtGFOHQ0mrxFs5Ksifd5ROHtNpQA-0-59eb1422532bc75e1882e34c5821d2ec)
从式(5.2-17)、式(5.2-18)中消去φ1可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0016.jpg?sign=1739315299-xVnI6PDe5OvGaWLSdTKnaYOQq3PuV1GE-0-73162f7cf989e978d01ad0bc8e89db43)
一般地,因此近似有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0018.jpg?sign=1739315299-m5rom7G1Jk7e6FPsr07EUG0qURzkRTm7-0-0038da94f4ef4c761286c8c99a7e6a70)
2)在y=±b处,Ex和H z连续
在y=b处,Ex和H z连续,由式(5.2-10b)和式(5.2-10c)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0019.jpg?sign=1739315299-WesmYP1mqWIwPRq8RepZlH0JQMDAPtjl-0-26242a97a0789dfcdb01eab4f8dd93e6)
将式(5.2-10b)、式(5.2-10c)代入式(5.2-4c)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0020.jpg?sign=1739315299-x76YQOsUvsosao6yECC797U22rvQbdLH-0-a373e5460e78866d26a3c8c49b905cc4)
式(5.2-22)与式(5.2-21)相除可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0021.jpg?sign=1739315299-RlnIUtoi29EKXa56XUPEgvxb7p7gNo6X-0-1a6c6e30d1c2588d39888ee03bf21200)
同样方法,在y=-b处利用场的切向连续条件可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0001.jpg?sign=1739315299-DX9zggjbc1DzZ56OfcRrtlUlgylF8Y2V-0-a3222625dbb394bc6ec14439953b3a70)
从式(5.2-23)、式(5.2-24)中消去φ2可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0002.jpg?sign=1739315299-7wD7mOI9PU92i2ayAW6Eagb2hOeNBfCH-0-16b87de94a52186574abd469ba81b226)
前面指出,模的下标m、n分别表示光场沿x、y方向变化的极大值数目。为了将
模本征方程中的下标p、q换成m、n表示,利用三角函数关系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0005.jpg?sign=1739315299-YEtW0dbo8cy8amT73JQGiHaSpzKPu7RF-0-33c10d5e215d207e67ab7e6f2cb0109a)
可以将模本征方程写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0007.jpg?sign=1739315299-4WVQuxO1KEbRgNDpYr2lIfIoSqgWVsQb-0-32e54cd4e5349a64d776b4fdeb0c4c0f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0008.jpg?sign=1739315299-ZK6j3VFCehgc2Cs8KEulkZVBIgCkeTDA-0-699de38dd59b56f01bf797f019aa92b6)
2.模式分析
对于模,已知主要电磁场分量是Ey和Hz。可以用类似于求解
模的方法来分析
模。根据麦克斯韦方程中电场与磁场的对称关系,只需要将E换成H,将μ0换成-ε即可。由此写出麦克斯韦方程的分量形式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0013.jpg?sign=1739315299-S2tbqoE9A58xoLxNsidvgGcTlTr2gtup-0-540b983e286858f3a93dadfefdb953c8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0014.jpg?sign=1739315299-H0EeNmG35wBvqp5TKb0qHM3F4t58M0Ql-0-83f6a6a353ac8afab471dd7d82cf0aa6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0015.jpg?sign=1739315299-Ef4b9Nk7rtN5ZLIe2JOWiLUSpac47NAs-0-b2cf2548b00373df0aab85714dfb3567)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0016.jpg?sign=1739315299-Fpn5ZxLm4h1FGKeVMSBrAmpKAmyBE5w3-0-cbc86aaa557a01b9f1829f0fdf7815d6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0017.jpg?sign=1739315299-2SrzAZmADaYopA4s9EKTVW6kTqL5W1m4-0-66ad9bfae6c8369edff8dd4620fe1f72)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0018.jpg?sign=1739315299-IIj3OCHfKMZUPUMNegAYJjR4X9PJlwRk-0-5ff36da9183defedadd9ba1551fa7a7c)
由式(5.2-28a)至式(5.2-28c)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0019.jpg?sign=1739315299-6cah4H6UmBECODHA9VgqCLWekWfIlawv-0-0d8e0f7c815907b8af953f2deefa2926)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0020.jpg?sign=1739315299-JdG7BorvxfvWDMVGy4bhLiFwwabpwA4m-0-e040fe5799d9b9dfea5818703ef4b4af)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0021.jpg?sign=1739315299-6CMDdtaGNwiKGGUbU0H2KuzLTzm09oLW-0-9a317e15909ea75467414cfa82d3b633)
另外,根据
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0022.jpg?sign=1739315299-CzSEKX0HTaPuonvdHyqO9NArbNH8E227-0-a25dbd97aae6dcb7f9ad3ab44337778d)
表示成分量形式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0023.jpg?sign=1739315299-DU8BEKOTtLE7nTFKhQDwoej0AEW3SppZ-0-c447fd645577939b9a384d53da4f272a)
由上式可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0001.jpg?sign=1739315299-TVTiTSE5QPaAEBKngVcqRnRZBLbCeeRY-0-8bac6f00242056bd3760b48397f32236)
将式(5.2-30b)、式(5.2-30c)及式(5.2-33)代入式(5.2-29a),经过整理得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0002.jpg?sign=1739315299-9ODL2TLV666PsbJRtGaVGfpkfFAjwx5h-0-e29d5370fcdb28c322c2ec70678f9589)
同理,将方程(5.2-34)的解分区域表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0003.jpg?sign=1739315299-CJqd9PtOHxgGsosnuwwmktHcM3w06Q4N-0-483b3cb9c21f5e9bdb0dc38f9a077655)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0004.jpg?sign=1739315299-AIozjDr2pDH6nAAQpv59fiGV422ndUqA-0-17a74225e46ae8e9435c525e52e25437)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0005.jpg?sign=1739315299-ou1DR9Xz96S57BDnpLbKQFwBX74kb0YT-0-6cfcc477492aac0ac164b7943fb40f1b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0006.jpg?sign=1739315299-OsW8hdf199IbnI7MkkVeWXTBqzwIxT4O-0-5e878ecdaa945c2b53d863f0b3057d07)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0007.jpg?sign=1739315299-S9CApa59vDuGJ6eQvjy9MNz0u30HB3ho-0-9de1d547c10dc6a5d1b87e02790682ea)
利用边界条件,可以得到模的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0009.jpg?sign=1739315299-BfdV4yUm634GPSkadR7yFNH4ZFqNjzzG-0-117927f18970750920c092496d3ff3da)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0010.jpg?sign=1739315299-GYyFvtFn8ZRu0BGQN7QTBKRWQgDM21vP-0-9032e09dbafb3ca3404e82930171de45)
5.2.2 有效折射率法
与前面介绍的马卡提里方法类似,有效折射率法也假定介质波导中传播的模式远离截止条件。这个条件使得矩形波导中的模式可以分成两种类型,即模。利用5.1节中平板波导的结果,可以把矩形波导分解为图5.2-2所示的两个一维平板波导的组合。在图5.2-2中,图(a)所示的平板介质波导薄膜层的折射率与矩形介质波导芯层的折射率相同,均为n1;图(b)所示的平板介质波导薄膜层的折射率为图(a)所示的波导沿y方向的有效折射率N1。N1的值由下式得出
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0012.jpg?sign=1739315299-P3QcUfOkqJ8wJVCy2asKjiXr18dQMf47-0-0ec93222df3a42f0e221889755f893db)
下面通过具体的模式分析,导出各类模式的本征方程,并求出模式的本征值。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0013.jpg?sign=1739315299-rLCPwJ7MEBAaiLgETLdnifJLEH7raMX6-0-fab71ff5ac1b984cac2f38b9ec38c801)
图5.2-2 有效折射率法分解示意图
1.E xm n模式分析
对于模,已知主要电磁场分量是Ex和Ey。从图5.2-2可以看出,这种场相当于图(a)所示的平板波导中的TE波;而对图(b)所示的平板波导而言,这种场相当于TM波。上述分析可得两平板波导的模式本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0001.jpg?sign=1739315299-FaDHN9ll9bCDNtdbf2dYiGCdZ3UUOiyB-0-000cc26e807f51c8e8888a9721c65330)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0002.jpg?sign=1739315299-o3JQtKOtDvrdhwHvXXmdmw3NUobhY0d6-0-a0043ff9fded2a05d10ce3a1e367221e)
式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0003.jpg?sign=1739315299-qbzgFxgkIfGWGdvVqzQytHWQdLFniN2f-0-6619f442e42b8bae92b2d15bfc2ab935)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0004.jpg?sign=1739315299-v9zG0coA4sXdpKbUUc5vXMdsn0NJYqLB-0-b88444360cd1eeeebdcdc352712986d4)
注意在图5.2-2中,图(a)及图(b)中两个一维平板波导不是等价的。图(a)所示的平板波导是图(b)所示的平板波导有效折射率的提供者。N1一旦确定,图(b)所示的平板波导的传播常数就是矩形介质波导的传播常数。由式(5.2-38b),可以求出矩形介质波导的传播常数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0005.jpg?sign=1739315299-52nFX0aYOtClCpONF3smH4oX3w2fQfLF-0-8f156464c61ac3e5269d312f53a653f8)
把式(5.2-37)代入式(5.2-40),可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0006.jpg?sign=1739315299-lDIOlkEj0UDUVAPdUFwpcAghQTTHtvTv-0-3925c6587ae84d9405b1ff3fd1119729)
上式即矩形介质波导的传播常数。
2.模式分析
对于模,已知主要的电磁场分量是Ey和Hz。从图5.2-2可以看出,这种场相当于图(a)所示的平板波导中的TM波;而对图(b)所示的平板波导,这种场相当于TE波。与前面的分析类似,可得两平板波导的模式本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0009.jpg?sign=1739315299-6wktwEe5WCm2aEE6cMEl6WZMZdiSrqRo-0-b2b11c519708dbe2d801fd7b2ca670d0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0010.jpg?sign=1739315299-Lf3mrZn9c8kBufooKRmXr7kK9oRn7lPG-0-5abe21b6dae9f86215aa36df64e1ce2c)
有效折射率法是一种简便、实用且较精确的方法,这种方法在矩形介质波导中得到广泛的应用。