![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
5.3 光纤[21],[58],[59],[63],[65],[67],[68]
前面对平板介质波导和矩形介质波导进行了分析。这里将对广泛应用于远距离、大容量通信的光纤进行分析。通常光纤是一种圆柱形的波导,按照其折射率的径向变化可分为阶跃光纤、渐变折射率光纤等。还有一些特殊的光纤,例如双折射光纤、椭圆光纤、蝴蝶结光纤等。本节将简单介绍阶跃光纤的电磁场理论。
5.3.1 导模与本征方程
由于光纤具有圆柱形结构,采用柱坐标系讨论比较方便。设光纤的轴沿z轴方向,纤芯半径为a,折射率为n1,包层折射率为n2,如图5.3-1所示。
在柱坐标系中,电磁波的电场强度E和磁场强度H分别表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0011.jpg?sign=1739316656-YG3xmaAEczu3c3CAgIsvAqIpio7WTOLi-0-fa60a6284c966937d301dad8661fe327)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0012.jpg?sign=1739316656-P5B8zwYyg3K5MUAwGIogyv4SKAESpvWH-0-97345200c62bcb4e400e87165e0fc0f2)
设时谐电磁波沿z轴传播,则光场各分量与坐标z、时间t相关的因子可以写成expi[ (βz-ωt)],将该因子代入柱坐标系中麦克斯韦方程的两个旋度方程可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0013.jpg?sign=1739316656-v1DGhlf9EnSagM2MUexsLCeEpRgIX4Vv-0-2b7bb9dfefb699f8bcb14e43c7420894)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0001.jpg?sign=1739316656-EEURfTJZpIMXnMkTd0Pqt9Y2RMwIMn5r-0-cbc5282f13b582b23700d2cfda0143a3)
图5.3-1 光纤的柱坐标系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0002.jpg?sign=1739316656-yKo4Kb8bsS6vcoX2u6Ox6Xg1xCGufB8h-0-82ff08d92a4698ef6693630d30548179)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0003.jpg?sign=1739316656-NzdgZ8oOkNom3L62botiDTRmBc5247wX-0-cb4384ff782f5fd6029cc1c38a6c717f)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0004.jpg?sign=1739316656-G7ve04gkTag2D7jIKmM0l5CFA4QQNKy5-0-3de54d33dc16150914a3c29642b40f64)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0005.jpg?sign=1739316656-MxzUN00JnvBEuqQTWnDUA84s9rN1dKx4-0-a0f27bf8323c1312425341439a2b6622)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0006.jpg?sign=1739316656-7qUeY4ZBPG4PMqsjZjzHpM0zeKIwdFBm-0-fa4bd0b5b126b8b0bb1e8f74e8ea8197)
如果介质中没有自由电荷与传导电流,Ez、Hz满足标量亥姆霍兹方程,在柱坐标系中可以写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0007.jpg?sign=1739316656-NSmOYwXN4kcDRtsCtjnp391BiY8ShArD-0-adaeea67c3884bc9934c6c2be9f3d556)
式中,ψ表示Ez或Hz。
采用分离变量法求解方程(5.3-4),设试探解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0008.jpg?sign=1739316656-iGPVBJcVxExADStoIM8jA9fp2FxntHKi-0-30275d137c604db985a70c8622adb8a3)
其中,m=0,1,2,3,…,将上式代入式(5.3-4)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0009.jpg?sign=1739316656-fJhcPJSl7ANedQdM5zNKMIkEJkYEoqcZ-0-1a668aa490cedf3fe83388c3878a2d5e)
方程(5.3-6)是贝塞尔方程。令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0010.jpg?sign=1739316656-vCsPFeHp3IBQo8zlb4awETLUvCppvWtD-0-1143f76f377ddeefe2ffd157e2deca68)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0011.jpg?sign=1739316656-6NLHAUsfSRrzqV3VBrXmQQ9KKVtgmpgj-0-416eddb3c91a949e6b7643dbfcfc76bf)
则在芯层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0012.jpg?sign=1739316656-8UqxNe58Wzms7ybyN0QZtbse1pXkDUNS-0-abe57be68d8140db3103b2c21398e8ea)
在包层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0013.jpg?sign=1739316656-DDmhgKLvOMXazEoR7rQi1CKE2kP0trMb-0-1b2ad615ead719569c6d0425706749ec)
考虑到在光纤中传播的电磁场必须满足:当r<a时,E(r)有限;当r>a时,E(r)趋于0。因此可以取的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0014.jpg?sign=1739316656-i6IsvyS6dR28g3CqltFOJAJ8LX072qq9-0-6a8fc0e97933ea1c30735d7786b65a41)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0015.jpg?sign=1739316656-HU1j1LiCNEU4gky8hYADuQAHnljInO8G-0-86ed609e39e9fa561261286c19f9775b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0001.jpg?sign=1739316656-N6qZASYkVP56M8Yf3gwr2czTaTHmgYzV-0-df243344ee9888b971e5bcb59b47bcef)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0002.jpg?sign=1739316656-0y4VOQ6M7OP8RbmAyJXxedmqPyKaT9aA-0-bd556d2dc4119b4013bef4c71440a836)
式中,。令Ua=U/a,Wa=W/a,Ua、Wa分别代表光纤芯内的横向相位常数和包层内的衰减系数。Jm,Km分别为第一类贝塞尔函数和第二类修正贝塞尔函数(汉克尔函数),图5.3-2(a)所示为几个低阶的第一类贝塞尔函数曲线,图5.3-2(b)所示为几个低阶的第二类修正贝塞尔函数曲线。
在芯层与包层的边界处,电场和磁场的切向分量连续,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0004.jpg?sign=1739316656-qcRUFOr8BnK6B1CVUzuFCgDEtMDQ8Eqk-0-b54b48538337e54535a1b09eb1f616a7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0005.jpg?sign=1739316656-N0NPRLR67qdfEWNoz00q3JvknVR5tNjD-0-b8d261c884863bf721b838baeb0b4fb0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0006.jpg?sign=1739316656-a0jY5dmAPprHarnUQ7Uyqo31uXtees2a-0-c6cab1e9e939baca543ad247166caa84)
图5.3-2 两种贝塞尔函数曲线
将式(5.3-9)代入式(5.3-10),得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0007.jpg?sign=1739316656-I4jeKH00uNi6KornFEemBUzduxtjUeD4-0-2fcf912bfdac807b52450c7e78472b54)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0008.jpg?sign=1739316656-sPbWr39rKARS2EjbpJqbLJB8QxHzadII-0-58a381db3253510fb2912b44a74c213d)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0009.jpg?sign=1739316656-gfULOJO0cxV67EI3k5kzyikzJFrb7yYo-0-f124112e34f6f0f0ce1b07dd48c5165c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0010.jpg?sign=1739316656-RflL6iO8A4XSpa2w5KVSfY3vYyJvEKDf-0-2b35676ffb57cad6ba7a70470ce54e3a)
这样,可以将纵向电场分量和纵向磁场分量表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0001.jpg?sign=1739316656-5Hus9GDQJSMRitXy2I5oXQrJoOD3dHen-0-5e488019c5ca4dba7139c608e6ca38a7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0002.jpg?sign=1739316656-ezXaSeGe7r5aicDkHEgNDvU1EAJgxuEj-0-17051589a09504ecc8b2fadddb670224)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0003.jpg?sign=1739316656-gnNb0lnaO8TLLJr1mDU28RIawtZNeHJL-0-9901bf4253ffbb31f6d5e14fc64ef13e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0004.jpg?sign=1739316656-kkWwIjdQkm31wAGZdBlbEhxkpDAUvBrP-0-fa3a6e36c973c8a849be05cc7e33137a)
上面表示中略写了各项共同因子exp i[ (βz+mθ-ωt)]。求出纵向分量Ez、Hz 后,就可根据式(5.3-2)和式(5.3-3)求出其他横向分量,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0005.jpg?sign=1739316656-XXBMz3MvlMvdVejkpVBDsVO3rLDNqSJd-0-623d96341d4971b87922e6d60bce88c1)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0006.jpg?sign=1739316656-QCrRVAxyqvWLsSghoGOEbCH7J5gkufu0-0-373144205d1cb401c7f685f24f0620d7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0007.jpg?sign=1739316656-uheetJP6zUv1T9b4JDVBN9HLq6CU4JfK-0-da70d514e6ca9130712e74ed6f9efb4d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0008.jpg?sign=1739316656-XKk6cTHF11OPWz3Vu61hVdgkJ9Wl7o05-0-82c9553e77566b3c7a650bed858b5fbd)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0009.jpg?sign=1739316656-k9KT13E4KdkQaFHCstEQ9im3COazhIeP-0-b7179c55bc0d965b923df4074f2c7b9c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0010.jpg?sign=1739316656-Rb9XcfNBrLaygeSCLJvgy4wCB2x9DRh6-0-f71db8a65ba458b2c447f7c58cba47ed)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0011.jpg?sign=1739316656-yttCvSEwMW9bVBq2sQQicNQAbdptrDqO-0-8d1d74affbbcf56a2d3bb7801ab3ea8d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0012.jpg?sign=1739316656-B7y1cwGTmt9oJkq37BTihh5dntmHhjso-0-0a4ef27fd92f48f8451544da5e82b0ac)
将式(5.3-13)各式分别代入式(5.3-14)中对应式,得到电场和磁场的横向分量,依次写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0013.jpg?sign=1739316656-YLr1nxsc5M8DrFm5cSRIEUc7H5amI9rR-0-1d919eb8141f03cc37fce04663b607f8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0014.jpg?sign=1739316656-Y8nEQnfjyX7pojn6DoZIqRjeBJs8GLee-0-a6c92b0cbba1b568f8f943754341ebf1)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0015.jpg?sign=1739316656-mj1o9V7cw8Wov934Fj6QXEnAiHOZVGbr-0-8072deac0f7d356004a50a13a9b642d8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0016.jpg?sign=1739316656-JQi3qiHcDQwAKRAMSv5OEBCR0DnPWtGv-0-a1ea31de0a2410ec956cf76a57ee825c)
以及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0017.jpg?sign=1739316656-AyjFi1fwHCaJ0bO4TnGKLaHeZhar5y6r-0-fbb152c523d587149450af4d55ea41be)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0001.jpg?sign=1739316656-lmEIkSE0wqw3mMx8T2fUxD7br0o5mtzx-0-73e792af65c2f9037fea970ab298aeea)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0002.jpg?sign=1739316656-kVaJPTmEz6MJveGR5guLwjDHOZHYxeRc-0-9e7b2d48e6e89be17d4ee7fe1955234d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0003.jpg?sign=1739316656-cQUsp14vh2FoYrOm4gYIqFeRQ5RI2agv-0-4a59a71cff17eb51882f577755da1041)
式中,J、K上面的“·”号表示对r的一阶导数。利用纤芯和包层界面处电磁场连续的边界条件,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0004.jpg?sign=1739316656-WlEywqJWQ9uLvtuG7KYAfOl23cSgwa9X-0-7a75dfa997c5098f380f3fcd9d524162)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0005.jpg?sign=1739316656-VJpzIgkg3JboVVJv9egodrwR4Y6ytnvn-0-6cb69a613f6935bc545e1c61ca327a07)
将式(5.3-15c)、式(5.3-15d)代入式(5.3-17a),以及将式(5.3-16c)、式(5.3-16d)代入式(5.3-17b)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0006.jpg?sign=1739316656-Q9sj1NCgevD63fUV1OMVWOwbTSSmO0Nb-0-c7c7de6f54f7ae83d771e873f7ddc963)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0007.jpg?sign=1739316656-jKzkX5bVJFCt0Y9zrXw5BhVeGu9TFjL5-0-0ac64723a6308ee0ede0378c4c088433)
注意,式(5.3-18a)与式(5.3-18b)右边相等,经过整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0008.jpg?sign=1739316656-2zTdVXsJj8OMdzfCg6fwNpKSisIsKkrX-0-7b5f0d83e727618be4298ee9711219ad)
上式即为光纤的本征方程,式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0009.jpg?sign=1739316656-PcsmDthVaC0nI25UV5OUP25BRE2MfzqD-0-12eb9bfceb85b15babe02cb0d0d92405)
V称为归一化频率。式(5.3-20)中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0010.jpg?sign=1739316656-M1tnSeotuQIM7g4iiQWIA04x1ICie2M2-0-29a44445f980021afe9a99f3a84d9704)
将式(5.3-19)与式(5.3-20)联立,可以求出在一定波导结构和波长情况下U、W、β各参量。在弱导条件下,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0011.jpg?sign=1739316656-DmA7GeI2oVOij88C3wXTUjmYMbpYBzOi-0-e309c860642e97ca6137863e4aed1b27)
式(5.3-19)可以化简为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0012.jpg?sign=1739316656-VsQAtpxghg3YmWfaxDHiHOd2rVbH3iYz-0-425e4c5ce1c6c07b2e8f3e6cb0b4f12d)
式中,m=0,1,2,3,…。
5.3.2 导模的分类
光纤中的导模包括TE模、TM模、EH模和HE模,下面依次简单介绍。
1.TE模和TM模
TE模对应于纵向电场Ez=0的电磁场模式。根据Ez表达式可知,对TE模有A=0,进一步可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0013.jpg?sign=1739316656-hkwcUxxtbumHyGclmKqpKXrPCUYXQgj8-0-334480f3f9795f946561673595314e28)
由于B、β、U、W均不为零,因此上式成立的条件为m=0。此时,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0001.jpg?sign=1739316656-nVXUJewIHayfpQxclSdQVABAYAYpLC87-0-1d1e1246b519c099c886c6b48df9535b)
上式为TE模的本征方程。利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0002.jpg?sign=1739316656-m3mgXjY2T09DF7Xrk59GG31hG6C3c0oj-0-a97ff747cad62ecb454a066f6f313eea)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0003.jpg?sign=1739316656-bIuNJqtlIW6ETlSbyYaDkh4S3DDndA1P-0-18a63f14e40a84f808bdb7441eed0cd7)
可以将式(5.3-25)表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0004.jpg?sign=1739316656-ToKUif8imIb4z84PBGlv8HUtjXm4cPC6-0-6b71a06783ef13d72c23b5dbb8eb79f7)
TM模对应于纵向磁场Hz=0的电磁场模式。由Hz的表达式可知,对TM模,有B=0,类似分析可得m=0。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0005.jpg?sign=1739316656-CDJYZzzINx8wN6kdBxu62H77X6FsRQTf-0-da1d5232acffcbbfaaa4e1a6d3b41904)
上式为TM模的本征方程。
2.EH模和HE模
当m≠0时,A、B都不为零,表明Ez、H z将同时存在,不存在单独的TE模、T M模。这种Ez、H z同时存在的模式称为混合模,其中当Ez起主导作用时,称为EH模;当H z起主导作用时,称为HE模。
在弱导条件下,EH模和HE模的本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0006.jpg?sign=1739316656-Jx5fcEogPyDvSdConFGMitru6NByXc3Y-0-61d203b568bc90accbe32e752f9b22ea)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0007.jpg?sign=1739316656-9OULnKymkFNOUyiA9ImgBPHKeYGILDTd-0-ec9aebab380f20c17c45e74390a8b9aa)
利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0008.jpg?sign=1739316656-6UpVJWErNtiuX0aN2MlJIdWmU91lUeLV-0-f8a0f34c42d403dfaefeb3bc098413cd)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0009.jpg?sign=1739316656-MZSOObGtPvkhTLc30OE7BuIJfJ8ZYYJP-0-19591b766ed7a9b3a0df8ce6e6d53dc6)
化简后得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0010.jpg?sign=1739316656-Ee7dEBppXeEush8L93ffNe5nnO81qgzU-0-78ac91966f50601b9052c400b5008daa)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0011.jpg?sign=1739316656-s5zvFkfoQKSqQbDqlABxwRKtK76e5BJK-0-b880eaea28749d9995a6f7612113aece)
5.3.3 导模的截止条件和截止波长
1.导模的截止条件
当导模在波导中传播时,主要能量集中在波导芯层,沿纵向无衰减传播,U、W参量均为正数,导模场在芯层为振荡函数,由贝塞尔函数描写;而在包层中,导模场为指数衰减函数,由汉克尔函数描写。
U、W参量均为正数的条件为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0012.jpg?sign=1739316656-G7mqBZXOJjVJ2gIqvTuDD35vNQsaMNpr-0-4252351f128f6599416b84e9911372bb)
如果,则W2<0,包层中场量的解变成振荡解,即出现辐射模,导致光场能量不能集中在波导芯层传播而截止。W=0为导模与辐射模的临界情况。因此截止条件为W=0,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0014.jpg?sign=1739316656-sQzmiOrelafK02snGAOgPauPEZwpoy5o-0-0ecfc539cc34de840fa5be08f795c415)
归一化频率Vc满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0001.jpg?sign=1739316656-HvnjqTOUWHbr4Tmn4SScJPgse0LYK7WN-0-0ad6986e5ec99376ac6a9c8e6686b98f)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0002.jpg?sign=1739316656-Akqo7kH3kRzYmeruPfVA2pNxrYc5XOby-0-25010c34276d54fc751a46f841f7f745)
通过本征方程求得Uc,进而确定Vc,最后获得各种模式的截止频率。
2.TE0n模和TM0n模的截止波长
对于TE0n模和TM0n模,因为m=0,所以式(5.3-19)变为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0003.jpg?sign=1739316656-ic8fPEnhedYypV6sf2ZZN7g6ks8zeSel-0-ba2d92ce874eebcf367544f4263f8c17)
等号左侧前后两个因式为零分别对应于TE0n模和TM0n模。当W→0时,式(5.3-36)要求J0(U)=0,这就是TE0n模和TM0n模的截止条件。因为J0(U)是个振荡函数,它有许多根,不同的根对应不同阶模的截止条件。当n=1时,U01=2.41(U01的下标01表示零阶贝塞尔函数的第一个根),说明当纤芯半径a满足方程U01≤2.41时,TE01模和TM01模就因为截止而不存在了。对于更高阶的模,即n=2,3,4,…可以依次类推。截止时,归一化频率为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0004.jpg?sign=1739316656-NSYR6bYyLxqxDlsBj5KPokmOoQevW39J-0-55f0cbbd1b7937341d6db59e1d9edade)
当n=1时,对应的模TE01和TM01的归一化截止频率最低。由于U01=2.405,可得TE01(或TM01)模的截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0005.jpg?sign=1739316656-zTGryrqkCSwCWRXq5qX7FEIKKjuXzmbT-0-b4310679d89b18ca4d6e2ce8795ea7a6)
当光纤的其他参量一定时,若λ≥λc,则相应的模式不能在波导中传播。
3.HE mn模的截止波长
截止时,W=0。根据HE模的本征方程,当W→0时,式(5.3-31b)右边的渐进特性应区分为m=1与m≥2两种情况。下面就这两种情况进行讨论。
1)HE1n模
当m=1时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0006.jpg?sign=1739316656-3v2lQYLijbcOaFjpBhLtWzynPRkqnccF-0-3b695b5556bfff25551a4ad7ffec3935)
因此,当m=1时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0007.jpg?sign=1739316656-DVT82njhZOp9L4XFXrvl878XgK5akoDg-0-c39a1aaad4a954acd3e5a6046c7b1fb9)
其解为Uc=0和J1(Uc)=0的根Uc=u1l,u1l表示一阶贝塞尔函数的第l个根。但Uc=0是否应舍弃需要进一步考察。因为当U→0时,J0(U)→1,因此是本征方程W→0时的解,应该保留。这样得HE1n模的截止参数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0008.jpg?sign=1739316656-KKPDeSTR78jtfIbJu1EXHWMFhD7F8AJ6-0-eff694c62f23a31d60c527d2ffde6d22)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0009.jpg?sign=1739316656-mvITC9U7v2gaV99VjDKX2MsHekYEFDB2-0-564ce4c5ca490420ac59ae12f806216e)
当n=1时,U11=0,对应的截止波长λc(HE11)=∞。说明HE11模没有截止限制,所以称为光波导中的优势模(即该模总是存在的)。
2)HEmn(m≥2)模
当m≥2时,Km(W)的渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0001.jpg?sign=1739316656-DgXuf6Kav9r3LlmiXOnA9DZbklnlFHho-0-b5e310fa0453a43ccb7c314ffaedb1de)
利用贝塞尔函数递推关系
2mJm(U)=UJm-1(U)+UJm+1(U)
将式中阶数降1,即m→m-1,得
2(m-1)Jm-1(U)=UJm-2(U)+UJm(U)
因此当m≥2时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0002.jpg?sign=1739316656-LAMysZR5OEU8g0TTo6wzYVXsdNzL9ZdV-0-8e009e887e8be753a92196b196987aa9)
于是当m≥2时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0003.jpg?sign=1739316656-kWYCv7ALNzEA9GgP9cjXlKyXFjuD7qgH-0-aba58862d12cb743ab12e724222e4293)
上式的解为m-2阶贝塞尔函数的根,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0004.jpg?sign=1739316656-WzzPEmK5q3WM1783RM6gnu1OtCFPlJpi-0-cae81336002c166e7d84d265f1e32240)
对HE21模,U01=2.405,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0005.jpg?sign=1739316656-I6XPBLeswt1xlm0WFFbaiwCTuD6u9U7t-0-f82248c19517f9a7cbed4186dbf9de61)
容易验证,HE2n模与TE0n模、TM0n模具有相同的截止波长,它们是简并模。
4.EH mn(m≥1)模的截止条件
根据EH模的本征方程(5.3-31a),当W→0时,该式右边的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0006.jpg?sign=1739316656-W6PfJLz8SAB9iNFcUc1fjOT1isLaSgkb-0-fb8ae75711bc3228dea6455dee0c1962)
因此有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0007.jpg?sign=1739316656-kRakqgkvFG8RLgZ3Qaozsz6rLwMOnBjr-0-abcdb2817d25a14cbf0365272732e733)
注意到当Uc→0时,上式的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0008.jpg?sign=1739316656-hEB80NcsJYWBB3794V2He0ukovsJcohH-0-f46687b298a84100038e4264e27d9c91)
可见,截止时Uc≠0,因此当m≥1时,EH模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0009.jpg?sign=1739316656-3yBflMmjhXjsRsShc1ljWHAFEGKLuIOQ-0-653b6f879684bcd2793d520483f16701)
这里Uc≠0表示,Jm(Uc)=0的第一个根要从Uc≠0的根算起。这样,截止参数Uc或归一化截止频率Vc为m阶贝塞尔函数的根Umm,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0010.jpg?sign=1739316656-UDP8DTZ9L8OmlbFnVNgusX86ueR6hhRA-0-ec318b445391f3717271dfce9f0752b7)
例如,对EH11模,U11=3.832,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0011.jpg?sign=1739316656-NFtojcz8giYJzjW5DUObk9qsFPI4jSo8-0-c2b8350360682654722470b76a468007)
5.3.4 色散曲线
光纤中导模的传播特性与U、V、β等参数有关。U、V决定导模光场的横向分布;β决定导模光场的纵向分布。归一化频率V是与光波的频率、波导尺寸及折射率分布有关的无量纲参数。一旦归一化频率V给定后,则根据本征方程可以确定U、W等参数,并进一步获得纵向传播常数β,也即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0001.jpg?sign=1739316656-VNv5JNoZvaP6RkRrCt5qrTXIvfzLKjQI-0-8234895b13c7ef3c677c3a8a6e5f46a6)
改变V的值可以得到不同的β,从而得到各种模式的β-V关系。另外,波的相速vp和群速vg分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0002.jpg?sign=1739316656-GEokgPdMtK04mlZK2NyRQ3O6AAVAyEIY-0-a978145fce3c6722e933a73987d1471e)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0003.jpg?sign=1739316656-r3RcJJtVG0V6fXGrwUiiU4LUOppsuq8d-0-d4418f00d6e9ac2dd145d5503ff1083c)
如果知道β-V关系,就等效于知道β-ω关系,即色散关系。根据色散关系,可以获得不同模式的群速和相速关系。图5.3-3所示为几个低阶模式的色散曲线。图中横轴表示归一化频率V,纵轴表示归一化相位。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0005.jpg?sign=1739316656-VZQkV9BLyCEX9mW33vmcEwMPTywy0hVq-0-b78789599ee85cb2e5b696bc5483dfff)
图5.3-3 几个低阶模式的色散曲线